
SUITABILITY ASSESSMENT OF OPC UA AS THE BACKBONE OF
GROUND-BASED OBSERVATORY CONTROL SYSTEMS

W. Pessemier∗, G. Raskin, H. Van Winckel, Institute of Astronomy, K.U.Leuven, Belgium
G. Deconinck, P. Saey, ESAT-ELECTA, K.U.Leuven, Belgium

Abstract

A common requirement of modern observatory control
systems is to allow interaction between various heteroge-
neous subsystems in a transparent way. However, the in-
tegration of off-the-shelf (OTS) industrial products - such
as Programmable Logic Controllers (PLCs) and Supervi-
sory Control And Data Acquisition (SCADA) software -
has long been hampered by the lack of an adequate inter-
facing method. With the advent of the Unified Architecture
(UA) version of OPC (Object Linking and Embedding for
Process Control), the limitations of the original industry-
accepted interface are now lifted, and also much more func-
tionality has been defined. In this paper the most important
features of OPC UA are matched against the requirements
of ground-based observatory control systems in general and
in particular of the 1.2m Mercator Telescope. We investi-
gate the opportunities of the “information modelling” idea
behind OPC UA, which could allow an extensive standard-
ization in the field of astronomical instrumentation, similar
to the efforts emerging in several industry domains. Be-
cause OPC UA is designed for both horizontal and verti-
cal integration of heterogeneous subsystems, we explore
its capabilities to serve as the backbone of a dependable
and scalable observatory control system, treating industrial
components like PLCs no differently than custom software
components. Performance measurements and tests with a
sample of OTS OPC UA products are presented.

INTRODUCTION

Context and Motivation

Similar to the efforts in industry, control system engi-
neers for astronomical observatories are continuously seek-
ing to reduce development and maintenance costs and to
increase system dependability. One of the most prominent
trends is to foster software reusability, by creating frame-
works which separate infrastructure code (i.e. the com-
mon technical aspects) from application logic (i.e. project-
specific functional aspects) [1]. Another trend is the con-
tinued effort to integrate OTS (either commercial or public
domain) software and hardware into these control systems
[2]. Today, generic frameworks exist which meet both re-
quirements to a large extent, even though some issues per-
sist. Firstly, deeply involving frameworks may impose too
strong constraints on the freedom of developers to choose
the best fitting or best known technology for a given prob-

∗wim.pessemier@ster.kuleuven.be

lem [3]. A “one size fits all” framework may exhibit code
bloat and a lack of scalability, especially towards smaller
and less demanding (embedded) applications. Secondly, as
most generic frameworks to date rely on CORBA or DDS1

as middleware to “glue” all subsystems together, integra-
tion of mainstream OTS industrial products remains incon-
venient. As will be elaborated in this paper, OPC UA may
offer a solution to these issues.

Methods

For this assessment we have compiled a list of qualita-
tive and quantitative properties that are commonly required
by observatory software frameworks, and in particular for
the Belgian Mercator Telescope (a 1.2m optical telescope
based at La Palma and currently being refurbished). The
approach is twofold: not only do we want to verify if
the OPC UA specification can satisfy these requirements,
but we also want to test whether OTS implementations are
complete and mature enough to build a functional infras-
tructure. For this purpose we have created a test set-up as
depicted in Fig. 1, consisting of a small sample of commer-
cial products with OPC UA connectivity. Naturally, many
more products2 of many more vendors are available on the
market. Particularly important in the set-up is the SDK that
we used to develop code for an experimental framework
based on OPC UA. For this purpose we evaluated the C++
SDK by Unified Automation.

Figure 1: Test set-up.

1Object Management Group specifications: http://www.omg.org/spec.
2See OPC Foundation website: http://www.opcfoundation.org.

THAAUST02 Proceedings of ICALEPCS2011, Grenoble, France

1174C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Integrating industrial/commercial devices



OPC UA BASICS

OPC UA is the successor of the suite of “classic” OPC
standards that were developed by the OPC Foundation
to interface industrial PLCs with SCADA and HMI (Hu-
man Machine Interface) systems. Besides the specification
[4], a collection of code deliverables has been released to
speed up application development and to facilitate com-
pliance to the standard. Among these code deliverables
are communication stacks in ANSI C/C++, JAVA, and C#
.NET, which implement common lower level functional-
ity. Two transport mechanisms are defined: the simple
but high performance UA TCP and the Web Services stan-
dard SOAP/HTTP. Optional message signing and encryp-
tion is based on the WS-SecureConversation specification,
and authentication is controlled by X.509 certificates. The
stacks also implement data encoding via an efficient binary
scheme or via XML. Built on top of the stack, an SDK
is responsible for higher level functionality such as service
handling and address space management. SDKs are offered
by the OPC Foundation and by third party companies.

One of the most characteristic aspects of OPC UA is
the extensive support for information modelling. Informa-
tion entities (Nodes) and the relationships between them
(References) can be defined, and exposed to the network
in the address space of a server. Not only data itself but
also meta-data can be exposed and transported over the
wire. The semantics of the information model can be de-
scribed formally in a namespace. A Node has several at-
tributes and can represent an object, a variable, a method,
an object/variable/data/reference type or a view (see [5]).
A full mesh network of Nodes and References, represent-
ing a fictitious information model of METIS (the proposed
Mid-Infrared E-ELT Imager and Spectrograph, see [6]) is
shown in Fig. 2. The example is not meant to be optimal or
complete, but attempts to illustrate some features of OPC
UA. Object-oriented concepts such as data abstraction, en-
capsulation, polymorphism and inheritance are supported,
as well as dynamic model changes, extensible references
types, and cross-server referencing.

REQUIREMENTS

Table 2 lists a number of essential requirements [7], and
whether they are met by the OPC UA specification and the
tested SDK (second and third columns respectively). Only
general comments are given, even though many require-
ments have more in-depth technical aspects which were
verified by developing code snippets on top of the Uni-
fied Automation SDK. A recurring observation is the level
of detail that is present in the OPC UA specifications and
the derived stacks and SDKs. A substantial amount of
these built-in features are distinctive for heterogeneous dis-
tributed control systems. For instance, data changes can
be monitored asynchronously via the MonitoredItems ser-
vices, which include standard arguments so that clients can
request (and negotiate) the interval to sample the underly-
ing data source, the publishing interval to minimize band-

width overhead, an optional filter to deal with noisy data
sources, and even a flag to request resampled data from the
server. Dependability mechanisms are also strongly built
into the OPC UA specification. For instance, OPC UA
clients need to send “publish requests” to a server in or-
der to keep the latter informed about the readiness of the
client to receive events.

Quantitative requirements are more difficult to assess
since they may vary strongly between projects and depend
largely on the used hardware. We therefore use the set-
up from Fig. 1 to measure the performance of a few typi-
cal service calls (read in this case) between a client and a
server built with the Unified Automation SDK, see Table 1.
The server is running on a Linux laptop and the client on a
Windows PC. The UA Binary protocol is used to transmit
the unencrypted and unsigned data via the gigabit network.

Table 1: Performance Measurements
Variables Single UInt32 1K*1K UInt32
per call variable matrix

1 0.37 ms 181 ms (∼22.1 MB/s)
10 0.68 ms 1784 ms (∼22.4 MB/s)
100 3.18 ms
1000 23.26 ms

The results indicate that the binary protocol of OPC UA
is capable of high performance transmission of data (or
meta-data) between components running on computer plat-
forms. The performance in a more heterogeneous set-up
(including embedded and real-time devices) is less useful
to assess since it depends even more on the particular hard-
ware and software configuration. Besides a priority mech-
anism for event handling on application level, no Qual-
ity of Service (QoS) features are specified by OPC UA.
And, even though throughputs of around 22 MByte/s can
be achieved when transmitting messages of several MByte
(see Table 1), no special services are defined to exchange
large data volumes. While other middleware technologies
such as CORBA and DDS can meet strict real-time and data
streaming requirements, OPC UA is clearly tailored for
system architectures with complementary, special-purpose
bus systems. These could include real-time fieldbuses, a
bus for large data volume transport, an IEEE1588 timing
bus, a safety bus, ... on a dedicated or shared medium (with
managed switches to preserve QoS if needed).

FEASIBILITY

Besides accommodating special purpose frameworks
(such as LabVIEW or PLC systems), an OPC UA-based
infrastructure should provide a comfortable framework to
develop applications in a popular language, on common
platforms. Although SDKs provide useful high level func-
tionality that is normally not part of a general middleware
like CORBA, an extra software layer and tools are needed
to simplify application development and deployment.

Proceedings of ICALEPCS2011, Grenoble, France THAAUST02

Integrating industrial/commercial devices 1175 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Table 2: Qualitative Analysis

Requirement Spec. SDK Comments

Platform
independence

Yes Yes No reliance on platform specific technology; SDKs are available for most platforms (non-
real-time, real-time, and embedded).

Scalability Yes Yes OPC UA is designed for vertical integration from sensor level up to mainframe level.
Applications expose well defined Profiles to describe which services they support. In
our test set-up, UA applications could be developed for embedded devices with few sup-
ported profiles (such as PLCs) to rich-featured servers on Linux PCs.

Reusability Yes Yes OPC UA facilitates and encourages the definition and standardization of information
models that extend the standard namespace. This is exemplified in Fig. 2: standardization
can be achieved on a low level (e.g. by representing all sensor values according to the
standard AnalogItemType), on a high level (e.g. by deriving a DetectorControllerType) or
even on a system-wide level (by referencing Nodes in other servers in order to facilitate
the organization of complex systems and avoid unnecessary aggregation).

Communication
paradigms

Yes Yes Services are defined to read and write data, to invoke methods on remote objects, and to
subscribe to events and data changes (monitored items). Multiple operations (e.g. method
calls) can be invoked in one request. The tested SDK provides both a synchronous and
asynchronous API for the service calls. Processes requiring a longer execution time
should be modelled as Programs (standardized state machines) instead of methods.

Complex data Yes No Servers need to expose the structured variable instances, their type definition and their
encoding details (so that clients can discover how to interpret them). The SDK we tested
required manual encoding of these user-defined types, but both stub/skeleton code gen-
erators (for types known at compile time) and generic helper classes (for types known at
runtime) were due to be released with the next minor update.

Lifecycle
management

No No Due to scalability and platform independence, OPC UA systems may be very heteroge-
neous. Therefore transparent starting, stopping and killing of client and server processes
is complicated or (in case of embedded devices) may be impossible. Lifecycle manage-
ment of objects similar to the container-component model can be accommodated well by
OPC UA, but the central “manager” (or a hierarchy of managers) needs to be developed
on top of the SDK. When a manager references Nodes in other servers, clients can easily
resolve these Nodes by using standard OPC UA services.

Alarms Yes Yes Alarms and Conditions (representing the state of a system) are standardized in OPC UA
by extending the event mechanism. Advanced features such as “shelving” (to prevent
operators from being flooded by alarms) are built-in.

Logging Yes Yes Straight-forward to implement by extending the BaseEventType (containing fields for the
timestamp, priority, description, ...) or one of its subtypes (e.g. for auditing purposes).

Location
transparency

Yes Yes OPC UA foresees Discovery Servers at well known locations, to which other servers
can register. Clients can query them to find the location of the server they need. More
advanced discovery of applications is feasible via a Global Directory Service.

Historical
archive

Yes Yes OPC UA does not define how historical information is stored, but does specify how it can
be accessed. An attribute is assigned to variables and event notifiers to specify whether
historical data or events are available. Clients can invoke standard services to read or
modify raw (or even resampled) historical data at given timestamps and intervals.

Dependability Yes Yes A wide range of mechanisms to increase reliability and availability are offered on a low
level (e.g. sessions handlers can deal with network interruptions) and on a high level (e.g.
compliance tools are available to test servers and clients). Security measures (confiden-
tiality, integrity, authentication and authorization) are part of the stack and are therefore
implemented by most OPC UA products. Due to the extensible design of OPC UA (e.g.
new encodings and transport protocols can be added) and the wide support from industry,
OPC UA is likely to be future proof. However, due to the lack of a standardized API, a
system infrastructure may strongly depend on a particular stack or SDK.

THAAUST02 Proceedings of ICALEPCS2011, Grenoble, France

1176C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Integrating industrial/commercial devices



Figure 2: Example of a full mesh information model in the context of METIS.

An important difference with CORBA is the poor avail-
ability of stub and skeleton code generators. Similar to
CORBA Interface Definition Language (IDL) compilers,
OPC UA code generators can be used to convert XML
namespace definitions into stub and skeleton code. Un-
fortunately, only a few OTS code generators existed at the
time of writing this article. Those we did find were either
inaccessible or too inflexible for us. Therefore we decided
to estimate the expense of a homemade solution. For this
purpose we wrote a few Python scripts which were able to
convert XML namespace definitions (designed in UML1 by
one of the available graphical tools) into C++ server skele-
tons with rudimentary introspection and dispatching func-
tionality. Application developers can derive classes from
these skeletons and include business logic. When the cor-
responding objects are instantiated and registered to our
server implementation, both the object instance and type
definition are automatically exposed. On the client side we
opted for a design with a narrow interface, in order to ac-
commodate multiple actions in one service call. While it’s
clear that our experimental code is unsuitable to be used
outside our test environment, we expect that it will take
less than a man-year of work to prepare and commission a
basic framework for the Mercator Telescope.

CONCLUSIONS AND OUTLOOK

In conclusion, we consider OPC UA suitable to serve
as the “backbone” technology of ground-based observa-
tory control systems. We estimate that the specification
and available implementations are sufficiently mature and
complete to cover the requirements of many projects. Even
so, at this moment an infrastructure built around OPC UA
cannot take full advantage from all opportunities offered
by the specification, since the adoption by industrial prod-
ucts is still limited. For instance, UA Binary connectivity
is generally supported, but SOAP/HTTP is not.

With respect to a “general purpose” middleware such as

CORBA, OPC UA is naturally more tailored to facilitate in-
teraction between the components of a heterogeneous and
distributed control system. In effect, much of the basic
functionality (alarms, logging, monitored items, ...) re-
quired by infrastructures for astronomical observatories is
already standardized by the OPC UA specification. As a
result, development efforts are reduced (because this func-
tionality is offered by SDKs), and more importantly, indus-
trial software and hardware can be integrated much more
seamlessly since they comply to the same standard.

More effort and a more rigorous approach are certainly
needed to create a framework which streamlines and fa-
cilitates application development for PCs, but we consider
the investment worthwhile even within the constraints of a
project on the scale of the 1.2m Mercator Telescope. For
the refurbishment of this control system we aim to host
most software on industrial PLCs and Linux PCs. We will
thereby try to benefit as much as possible from technology
advancements such as powerful and dependable soft-PLCs,
flexible (object-oriented) PLC programming environments,
and OPC UA as the universal control interface.

REFERENCES

[1] G. Chiozzi et al., “Enabling technologies and constraints for
software sharing in large astronomy projects”, Proc. SPIE,
Vol. 7019, 2008.

[2] G. Chiozzi et al., “Trends in software for large astronomy
projects”, Proc. ICALEPCS, 2007.

[3] P. J. Young et al., “Instrument control software requirement
specifications for Extremely Large Telescopes”, Proc. SPIE,
Vol. 7740, 2010.

[4] OPC Foundation, OPC UA specification Parts 1-13.

[5] W. Mahnke, Stefan-Helmut Leitner and Matthias Damm,
“OPC Unified Architecture”, Springer-Verlag, 2009.

[6] B. R. Brandl et al., METIS: The Mid-Infrared E-ELT IMager
and Spectrograph, Proc. SPIE, Vol. 7014, 2008.

[7] G. Raffi, B. Glendenning, “ALMA Common Software Tech-
nical Requirements”, ESO, Issue 1.0, 2000-06-06.

Proceedings of ICALEPCS2011, Grenoble, France THAAUST02

Integrating industrial/commercial devices 1177 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


