
THE MRF TIMING SYSTEM. THE COMPLETE CONTROL SOFTWARE
INTEGRATION IN TANGO

J. Moldes, D. Beltrán, D. Fernández, J. Jamroz, J. Klora, O. Matilla, R. Suñé
CELLS, Cerdanyola del Vallès, Barcelona, Spain

Abstract
Alba [1] is a synchrotron light source under installation

located nearby Barcelona. This 3 GeV third generation
light source is planned to deliver the first X-rays beam to
the users in 2012. The linac was commissioned in 2008,
the booster in 2010/2011 and the Storage Ring in 2011.
The seven beamlines included in the “Phase One” are
being commissioned at the end of 2011.

The timing system is mainly used to synchronously
distribute signals to all the equipments of the machine that
need them. It is built on top of the MRF [2] timing
solution. It is a fast digital, point to point, event based
system. The system basically works by sending event
codes from one event generation source (synchronized
with RF/4 frequency) through a fast, tree structured,
bidirectional fibre optics cabling network to many event
receivers (about 100), which react to these event codes in
different ways, amongst which the most commonly used is
to generate a pulse (which characteristics are
configurable) in one of its outputs. This pulse is
connected to the hardware equipment that physically
needs it. There are currently 418 output signals connected
to different equipments. In other words, timing provides
the “synch” in the synchrotron, keeping synchronized all
the key systems (power supplies, RF and diagnostics).

The receivers are also capable of sending event codes
up to the event generator when they detect activity in one
of their two inputs. The generator can then redistribute
this event again in downwards direction to all the
receivers. This feature has been used to implement the
Fast Interlock system [3]. There are currently 49 interlock
signals connected to the system.

Logging of events with globally distributed timestamps
is available in the receivers. This feature is specially
useful (coordinated with Fast Interlock system) to easily
and quickly determine the cause of a sudden beam loss.

The event generator is also capable of distributing up to
8 arbitrary digital signals using another feature called
Distributed Bus (DBus).

In combination with other systems, timing will also be
the key for getting the desired filling pattern of the
machine and for implementing the top-up feature.

LAYOUT
The layout of the system is detailed in Fig. 1. As

pointed above, it is basically a tree structured fibre optics
network, starting from the event generator (EVG from
now on) fanned out by the fanout/concentrators (fanouts

from now on) and ending in the event receivers (EVR[s]
from now on). This downwards path is the one mainly
used. The EVG sends event codes to the EVRs, which
react to them mainly by generating a pulse in any of its
outputs.

Figure 1: Layout of the Timing System.

However, the communication can also be done in
upwards direction, starting from any of the EVRs sending
an event up to the EVG. The later can then propagate
downwards the event to all the EVRs. This is the core of
the Fast Interlock system [3].

THE HARDWARE
Hardware was provided by different companies.
The core of the system, formed by the EVG, EVRs and

fanouts, was supplied by MRF [2]. The EVG is the 230
model and almost all the EVRs are also 230 model. In
addition to these, a few units of EVRTG300 have been
acquired for special purposes, which we will see later.

It was decided to host the EVG and EVRs in cPCI
machines, due to their robustness and reliability. Hence,
the EVG and EVRs (model 230) were supplied in cPCI
3U form. The 3U cPCI chassis cPCIS-2632 and CPUs
cPCI-3840 were supplied by Adlink [4].

The fanouts come in 6U cPCI form. Adlink chassis
cPCIS-6418U and cPCIS-6130R were selected to host
these cards. Fanouts control is much simpler than EVG
and EVRs and hence it is not necessary to use a CPU to
manage them. They provide an ethernet connection and an
API based on UDP that is enough to control them.

The EVRTG300 units are also 6U cPCI form and were
mounted in cPCI-6130R chassis with a cPCI-6965 CPU.

The fibre optics cables were supplied by R&M [5].
In the next section we will have a more detailed view of

the main hardware components (EVG, EVRs and fanouts)
and their main capabilities. Thought extensive, it is not a

Proceedings of ICALEPCS2011, Grenoble, France MOPMU023

Status reports 483 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

complete description of these devices. See [2] for full
information.

Figure 2: cPCI chassis with CPU and 1 EVR.

Figure 2 shows an example of use of the system. We can
see a cPCI chassis with a CPU and an EVR. The four
outputs of this EVR are used in this case to provide
timing to 8 BPM units. We can also see two inputs
coming from a Fast Interlock concentrator [3], in this case
coming from any of the 8 BPM units in case the beam
orbit gets out of limits. The two orange Rx/Tx fibre optics
cables are also visible in the figure.

Event Generator
The EVG is responsible for creating and sending out the

events to the EVRs.
Events are sent out by the EVG as event frames

(words), which consist of an eight bit event code and an
eight bit distributed bus data byte. The maximum event
transfer rate is derived from the external RF/4 clock. The
optical event stream transmitted by the EVG is phase
locked to the clock reference.

There are several ways of generating the events:
Trigger events. A single event is fired by an internal
configurable counter.
Sequence events. This is the feature used in our case.
The sequence is a table like structure, with pairs
timestamp - event, so the users can define exactly the
time to wait until the next event is sent. The
sequence itself is triggered by an internal
configurable counter. Receivers can be grouped by
subsystem to react only to some events. This way,
users can fire different events that trigger only a
given subsystem, without affecting the rest.
software events: any event can manually be sent on
user request.
events received from the upstream EVRs (used for
the Fast Interlock System).

In addition to events the EVG enables the distribution
of eight simultaneous signals sampled with the event
clock rate. This feature is called distributed bus.
Distributed bus signals may be provided externally or
generated on-board by programmable counters.

Event Receivers
EVRs decode timing events and signals from the optical

event stream transmitted by the EVG.
The EVRs lock to the phase event clock of the EVG and

are thus phase locked to the RF reference.
The EVRs basically convert the data got from the EVG

to hardware outputs. Every info packet got from the EVG
is 16 bits long, and is divided into two parts:

• Event code (8 bits).
• DBus bits (8 bits). Any output of the receiver can be

configured to follow any of these bits. When the
value of this bit is 1, the output is set to high, and it is
set to low when the value is 0. This means that we
can reproduce up to 8 arbitrary digital signals in any
part of the machine at clock frequency resolution.

Two mapping RAMs (only one can be active at a time)
are provided in order to configure how the EVR will react
when receiving a given event. This RAM contains a table
like structure in which event codes are associated to
different actions, amongst which the most common ones
are:

• Trigger a pulse in a given output. The delay since the
event is got is configurable, as well as the width.
Both width/delay can be set in 8 nano seconds steps.

• Set a given output to high. A delay is configurable.
• Reset a given output to low. A delay is configurable.
• Log the event. Events can be stored with globally

distributed timestamps into a log memory.
• Forward the event downstream.
Two external hardware inputs are provided to be able to

take an external pulse to generate an internal event. This
event can also be transmitted in upwards direction to the
the master EVR and from this to the EVG for distributing
it downwards to all the EVRs. This is the core of the Fast
Interlock system [3]: any interlock signal connected to any
receiver can be distributed to the whole machine in 4.2
micro seconds.

EVRTG300 units add to the above a special feature. A
fine grain delay of 10 pico seconds steps can be set in any
of its outputs. This will be used for being able to inject
any bucket of electrons in any position of the storage ring.
It will also be used for the kicker magnets delay fine
tuning and for providing timing to the streak camera.

Fanouts
These devices are mainly hardware devices and have

few configurable settings. They have a dual function:
• The 8-way fan-out receives the optical event signal

through a fibre connected to the uplink RX port. This
signal is fanned out to all eight downstream ports.

• The concentrator receives signals from up to eight
EVRs or downstream concentrators and forwards the
signals upstream.

MOPMU023 Proceedings of ICALEPCS2011, Grenoble, France

484C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Status reports

Figure 3: Timing manager GUI, the main users interface with timing system.

THE SOFTWARE
The software for controlling the system was developed

from the lowest level up to the highest user GUIs level. In
the middle we had to develop the core of the system: the
tango device servers in order to integrate all the
components into tango [6].

Drivers and API
Linux device drivers for the EVG and the EVRs had to

be developed. Drivers for kernel 2.6 were developed by R.
Suñé and J. Pietarinen from MRF [2].

In addition to this, a binding for python has been
developed in order to use the manufacturer's API, which is
written in C++. Swig [7] has been used for this purpose.

Tango Device Servers for EVG, EVR and Fanouts
Tango device servers have been developed to control all

the features of the EVG, EVRs (both 230 and 300 models)
and fanouts. These device servers have been written in
python, using the above mentioned pythonized API and
the python binding for Tango: PyTango [6]. They allow to
control all the features of a single unit. In addition to this,
the tango device server allows to permanently store in
Tango database the configuration of a given unit and
reload it when the device server is started. This permits
the permanent storage of the configuration of the whole
timing system.

Tango Device Servers for Configuring and

In order to be able to control all the units in a
centralized and convenient way, the TimingManager

device server was developed. This device allows to
set/retrieve the configuration of all the EVRs using a
simple XML format and also configure/retrieve the logs.

A TimingMonitor device server was developed for
monitoring the system health. This device is continuously
monitoring the status of the EVG, EVRs and fanouts to
find any problem that may occur.

THE GRAPHICAL USER INTERFACES

EVG and EVR Expert GUI
Expert GUIs for the EVG and EVRs (both models
included) were developed. These GUIs communicate
respectively with the EVG and EVR tango device servers
in order to set/retrieve all the settings of the unit. These
GUIs are meant to be used by expert users only.

Timing Manager GUI
This GUI is the users main interaction point with the

system. Fig. 3 shows this application. This GUI runs of
top the TimingManager device server.

Users provided the initial configuration of the system in
a spreadsheet, basically specifying for each output of each
receiver which event or events would trigger that output
and also the configuration of the pulse/set/reset to be
triggered. For each receiver they also provided a tag,
which was used for splitting it and building the tree
structure shown in Fig. 3, hence allowing users to group
EVRs by subsystem and easily locate any output.

The first three tabs, show basically the same
information but sorted in different ways. As shown in the
figure, every line shows the output information, formed by

Monitoring the System

Proceedings of ICALEPCS2011, Grenoble, France MOPMU023

Status reports 485 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

the tree node (including event name), the EVR tango
device name, a user editable description for that EVR, a
user editable alias of the output, the output number, the
source for the output (DBus number or event code),
pulse/set/reset (exclusive), pulse delay and width (the
later no applicable for set/reset) and polarity. Delay, width
and polarity are user editable.

The difference between “Simple view” and “System
view” is that the former shows only one line per output
(different events can trigger the same output), while the
later displays the same line as many times as events
trigger it. “Distribution view” show the same information
as the “System view”, but in this case the tree is built
from the event code down to the EVRs, hence allowing
users to know which outputs of which EVRs are triggered
by a given event.

“Backward/External” allows the configuration of the
backward events, used by the Fast Interlock system [3].

“Log config/Log view” allows the configuration of the
logging of events in any EVR and retrieving/inspecting
the contents of the logs of all the EVRs.

“Interlocks filter” allows to enable/disable forwarding
of a given event in the main top EVR of the system (the
one on the top in Fig. 1). This is useful for preventing a
given interlock to be propagated downstream.

“Generator” tab allows users to enable/disable the EVG
sequencer and editing it's contents.

The open/save buttons allow users to load/save the
configuration of the whole timing system.

Timing Monitor GUI
This GUI is built on top of the TimingMonitor device

server, which is continuously monitoring the system and
warns about any problem it detects. A snapshot of the
GUI can be seen in Fig. 4.

Figure 4: Timing monitor GUI.

 The aspects that are monitored:

• EVR violation. All the EVRs can detect a problem in
the fibre optics link it receives.

• Direct heartbeat. A heartbeat event is periodically
sent by the EVG. A time out alarm is set by any EVR
if it doesn't receive that event for a predefined time.

• Reverse heartbeat. Every EVR is instructed to send a
heartbeat periodically up to the main EVR.

• EVR Alive. It checks the tango state of every EVR
device server.

• Fanouts. It checks the status of the fanouts.

CONCLUSION

The development of the control of ALBA timing system
has been quite a big effort. It has proved to be a very
useful tool for commissioning, during which the fine tune
of the timing of any of the key elements of the machine
was possible with simply a two click operation. The
save/open feature allowed the saving/restoring of any
configuration of the whole timing system with a 3 click
process. The permanent storage of all the settings in tango
database allows a transparent recover after a system
shutdown (i.e. for maintenance): all the settings are
automatically restored on power up.

The timestamped logging feature also proved to be a
valuable tool for commissioning, allowing to easily and
quickly find the root of the problem when beam was
suddenly lost.

The Fast Interlock system [3] has also proved to be the
fastest system for interlocking the whole machine.

The control system has provided the users a very simple
tool which abstract them from the big complexity of the
underlying system.

As part of the tango project [6], all the code and its
dependencies are free software and can be freely and
easily reused by the community with relatively little
effort.

CONTRIBUTIONS
Many people has contributed to this project. Specially

remarkable is the outstanding effort in developing a big
part of the software by R. Suñé before leaving Alba.
Thanks to J. Pietarinen [2] for his excellent support for the
devices he provided. Many thanks to O. Matilla and D.
Beltrán, who were the main designers of the system itself.
Thanks also to J. Jamroz for hardware support.

REFERENCES
[1] CELLS-ALBA: http://www.cells.es
[2] Micro-Research Finland: http://www.mrf.fi
[3] O. Matilla et Al, “The Alba Timing System. A know

architecture with a Fast Interlock System Upgrade”.
[4] Adlink: http://www.adlinktech.com
[5] Reichle & De-Massari: http://www.rdm.com
[6] Tango: http://www.tango-controls.org
[7] Swig: http://www.swig.org

MOPMU023 Proceedings of ICALEPCS2011, Grenoble, France

486C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Status reports

