Proceedings of ICALEPCS2011, Grenoble, France

MOPMNO013

OPERATIONAL STATUS DISPLAY AND AUTOMATION TOOLS FOR
FERMI@Elettra*

Claudio Scafuri, Sincrotrone Trieste, Trieste, Italy

Abstract

Detecting and locating faults and malfunctions of an ac-
celerator is a difficult and time consuming task. The sit-
uation is even more difficult during the commissioning
phase of a new accelerator, when the plants are not yet
well known. Faults involving single devices are easy to
detect, however a fault free machine does not imply that it
is ready to run: the definition of malfunction depends on
what is the expected behavior of the plant. In the case of
FERMI@Elettra, in which the electron beam goes to differ-
ent branches of the machine depending on the programmed
activity, the configuration of the plant determines the rules
for detecting malfunctions. In order to help the detection
of faults and malfunctions and to display the status of the
plant, a tool , known as the "Matrix”, has been developed.
It is composed by a graphical front-end which displays a
synthetic view of the plant status grouped by subsystem and
location along the accelerator, and by a back-end calcula-
tion engine. The graphical front-end gives also the possibil-
ity, once a problem is detected, to focus on its details. The
calculation engine is composed by a set of objects known
as Sequencers. The calculation rules have been determined
by analyzing the various subsystems and global working
of the accelerator with plant and operations experts. The
Sequencer is designed so that it can also issue commands
to the plant. This will be used in the next releases of the
Matrix for actively switching from one accelerator config-
uration to another.

INTRODUCTION

FERMI@Elettra is the new 4" generation synchrotron
light source currently under commissioning in Trieste,
Ttaly[1]. It is based on a 1.5 GeV electron linac and seeded
free electron laser photon generation. The FERMI@Elettra
controls system [2] is based on Tango and is presently made
up of about 2800 different Tango devices. The control
room operator can access the plant by means of about 1600
different instances of control panels and tens of Matlab ap-
plications. These numbers show that the plant is large and
complex and can be quite difficult to manage also for expe-
rienced users. Another source of complexity comes from
the fact the the electron beam can be brought through dif-
ferent paths according to the task that must be performed:
several spectrometers for measuring the energy and other
characteristics of the beam at different acceleration stages,
two bunch compressors, and finally two different undulator

*This work was supported in part by the Italian Ministry of Uni-
versity and Research under grants FIRB-RBAPO45JF2 and FIRB-
RBAPO6AWK3

Operational tools and operators’ view

chains.

In order to help detecting faults and misconfigurations of
the plant, we designed and implemented a tool - known as
the "Matrix” - to give a comprehensive and simple view of
the state of accelerator to the control room operators. The
Matrix analyzes many accelerator components - interfaced
by means of Tango devices - and checks if they are ready
to transport the beam to a certain destination. The analysis
is done mostly utilizing the State of the tango devices and
the desired Scenario.

States

Every Tango device exports a standard State variable.
The State variable can assume a set of pre-defined val-
ues: ON, OFF, FAULT,STANDBY, etc.... By reading
this variable we can know wether a device is working or
not or if has any problem. Further diagnostics of possi-
ble problems is done by means of specific, device depen-
dent informations. The value of the State variable is calcu-
lated from the operating conditions of the equipment that
the Tango device is controlling. All the Tango devices in
FERMI@Elettra use the State variable consistently.

Scenario

The Scenario is a coherent collection of rules used to
check that the accelerator is ready to transport the beam to
a desired destination, such as one of the various electron
spectrometers, or one of the two undulator chains. Each
rule is in charge of a well defined section and subsystem of
the accelerator. Many of the rules are re-used in different
scenarios, reflecting the fact the the electron beam must go
through the same sections of the accelerator. The Scenario
is selected and activated by the control room operator.

GRAPHICAL INTERFACE

The graphical interface (see Fig. 1) is horizontally di-
vided in two areas. The upper area display the accelerator
Matrix, the lower area shows a diagram of the accelerator
and in formations about the selected scenario. The Matrix
displays the state of the accelerator by means of a number
of ”coloured lamps”. The lamps are organized in tabular
format. Columns are associated to accelerator sections and
ordered according to the beam path. Rows are associated to
different sub-systems of the accelerator equipment: mag-
nets or power supplies, diagnostics, vacuum, RF, laser. A
lamp of a cell thus shows the status of a family of devices of
a certain section of the accelerator. The colour of the lamp
indicates if these devices are working as expected (green)
or not (red). The lamp can be also grayed out when the

263

MOPMNO013

' The Matrix <@do>

Select section —
& sub-system |

Proceedings of ICALEPCS2011, Grenoble, France

N L LH Lol BCO1 Lo2 L03 BCO2 Lo4 ns |s SFELO1 FELO1 MBD
oo c FELOL
> SPLH > SPBCO1 >
FERMI laser Oy AN i
MATRIX Suter] Oy
[> bearmn through FELO2
v
i beam at beam at
2 STATE P> SPIN > DBD
w MBD
[® show datalls Reset scenario |_|Dnne readyAtFELOL

Figure 1: The Matrix panel.

cell is not taken into account in the active Scenario. Row
and columns headings are also coloured. Their colour sum-
marizes the state of the accelerator section or sub-system
according to the active Scenario.

Diagnosis of Problems

In case of a problem, signaled by a red lamp, the operator
can click on it and check which are the devices that do not
behave as expected (see Fig. 2).

Figure 2: Diagnosis of a problem.

The view is switched to a table that emphasizes the rules
which are not met. The state of all the devices involved in
the calculations is also displayed in the lower part of the
table. By clicking on the state label is then possible to start
the control panel dedicated to the specific device. With just
two mouse clicks most of the problems or misconfigura-
tions are detected and explained.

Accelerator Diagram

The lower part of the graphic interface displays a
schematic diagram of the accelerator and a number of but-
tons for selecting and activating the different Scenarios; the
button corresponding to the active Scenario is highlighted.
The schematic of the accelerator is divided in segments.

264

Each segment is linked to a charge sensitive instrument
(BPM, Charge Monitor), so that when the beam is trans-
ported through the instrument the corresponding segment
is coloured in green.

SEQUENCER

The Sequencer is the building block of the calcula-
tion engine used by the Matrix. It is developed in
Python starting from the SequencerBlock class which de-
rives from standard Python threading.Thread class. The
SequencerBlock class overrides the run() method (this is
required by the Threading class; the run method is called
indirectly by the the start() method of the Threading class),
implementing the activity diagram shown in UML format
in Fig. 3. The run() sequence codifies and formalizes the
standard steps that must be done in order to verify equip-
ment conditions or actively modify them; it is foressen
in fact that Sequencers will be used also to automate the
operations of FERMI@Elettra such as start-up, shutdown,
changing of beam path, etc. ..

run ()

preConditions

rollback

do_rollaback
[exception]

GD

postConditions

Figure 3: Calculation Engine: main sequence diagram.

Operational tools and operators’ view

Proceedings of ICALEPCS2011, Grenoble, France

The design of the Sequencer comes from many years
of practice and experiences of accelerator operations au-
tomation [3], which have been thoroughly reviewed and up-
graded to object-oriented programming concepts and tech-
niques. The Sequencer has been designed from the start to
be easily integrated with the Tango control system.

preConditions, body, postConditions

The Sequencer action is logically divided in three steps,
which are called by the run() method. First, check if there
are conditions to start the action; this is done in preCondi-
tions method. Then execute the effective action in the body
method: calculate the State (that is colour) of a lamp of the
Matrix, or issues commands to equipment to change the op-
erating conditions of the plant. Finally check the outcome
of the previous steps; this is done in the postConditions
method.

Errors and Recovery

The three steps:preConditions, body, postConditions,
notify errors by rising exceptions which are caught and
handled by the run method. The Sequencer also provides a
rollback method which can be used to try to restore the ini-
tial conditions in case the postConditions are not checked.
The call to rollback must be explicitly enabled by the pro-
grammer of the Sequencer.

Implementation of Real Sequencer Objects in
Python

The Sequencer provides a base class and a pattern; the
effective knowledge (or intelligence) of the plant that must
be checked by a real instance of the Sequencer must be
coded by the programmer and is provided by machine and
operations experts. The programmer must always derive
new Sequencer object from SequencerBlock class. The new
Sequencer implements directly the three main methods and
can add other methods which can be useful for the specific
situation. At the same time the programmer can use already
existing Sequencer objects by aggregation. Sequencers are
written in Python. With Python the programmer can very
easily load end execute some Python module at runtime.
In this way the programmer can modify the behavior of a
Sequencer object at runtime. This feature has been exten-
sively used in the Matrix for changing the behaviour of the
program when a new Scenario is selected.

MATRIX SEQUENCERS

Several Sequencers have been developed for the Matrix.
They perform two main tasks: first, calculate the state of
Matrix cells, rows or columns headers: they are derived
from StatesBlock; second, manage the setting of Scenarios:
these objects are derived from ScenarioBlock (See Fig.4).

Operational tools and operators’ view

MOPMNO013

StatesBlock

The StatesBlock class is a sequencer that analyzes the
Tango State variable of a group of devices and calculates
a resulting State. A StatesBlock object is configured with
a list of Tango devices and their respective admissible
states. The StatesBlock body method periodically samples
the configured devices and analyzes if the group is in an
admissible state. The StatesBlock contains also some aux-
iliary methods to report in detail the result of the analysis.
The report is used by the Matrix when the detailed view is
selected. All the Matrix cell states are calculated by dedi-
cated specializations of StatesBlock (e.g. diagnostics_dbd
in Fig.4) StatesBlock is also the base class for Header-
StatesBlock objects which are used to calculate the State
(that is the colour of the lamp) for a column or row of the
Matrix. HeaderStatesBlock use simple syntactical rules to
automatically create the list of Tango devices and admissi-
ble States.

Deployment

The Matrix needs one StatesBlock object for each of
its active cells. All these objects are managed by a ded-
icated Tango device server written in Python, which ex-
ports a simple and clean interface for interacting with a Se-
quencerBlock object. This deployment scheme makes all
the stuff needed by the Matrix generally available as stan-
dard control system components. The most important tech-
nical reason for this deployment scheme is that it ensures
that there is exactly one instance of each of the configured

threading.Thread

start ()

SequencerBlock

CurrentStateStatus

preConditions ()
body ()
postCondition ()
run()

1

StatesBlock

ScenarioBlock
manage Scenario

+genericInferenceRule ()
+formatStateset ()

I J

diagnostics_dbd
calculate state of matrix cell

+startBlock ()
+callBlock ()

ﬁx JAN

HeaderStatesBlock

[!

magnets dbd

readyAtDBD readyatFELO1

Figure 4: Calculation Engine: class diagram.

265

MOPMNO013

SequencerBlock running in the control system of the plant:
in this way, when the SequencerBlock objects is be used to
modify the plant configuration they will do it in an ordered
and consistent manner.

ScenarioBlock

Objects of the ScenarioBlock class manage the activa-
tion of Scenarios. A ScenarioBlock is programmed with
the list of Tango devices and the corresponding State-
Blocks objects that must be activated for the given Sce-
nario. The configured Tango devices are loaded with the
chosen StatesBlock and started when the ScenarioBlock is
activated. The ScenarioBlock class is derived from States-
Block so that we can reuse the Tango State analysis and
reporting features.

CONCLUSION AND OUTLOOK

The Matrix has been used during the commissioning
shifts and has shown to be an effective tool for monitor-
ing the general status of the plant. The effectiveness of
the Matrix depends strictly on the quality and completeness
of the Scenarios: a good collaboration and mutual under-
standing between machine experts and programmers is of
paramount importance in order to correctly and completely
analyze and define the various rules. We expect to improve
and extend the Scenarios and the diagnostics capabilities of
the Matrix with the knowledge gained during the commis-
sioning of FERMI@Elettra.

The next important development of the Matrix will be
the automation of operations. As the new accelerator will
start operations for FEL light users, standard procedures
will be defined for setting up the plant and guaranteeing
optimal and repeatable operating conditions. These proce-
dure will be analyzed and implemented by means of Se-
quencerBlock objects and supervised by the Matrix. The
ultimate goal is to make FERMI@Elettra operable by a
team of two control room operators.

266

Proceedings of ICALEPCS2011, Grenoble, France

THANKS

The initial design and development of the system de-
scribed in this paper was done by Fabio Asnicar.

REFERENCES

[1] S. Di Mitri, “Commissioning and Initial Operation of
FERMI@Elettra”, IPAC 2011, San Sebastin, September
2011.

[2] M. Lonza et al, “Status Report of FERMI@Egelettra Control
System”, ICALEPCS 2011, Grenoble, October 2011

[3] D. Bulfone, F. Potepan, C. Scafuri, “Automating ELETTRA
Operation with ‘One Button Machine’ ” 17Th Particle Ac-
celerator Conference, Vancouver, Canada, 12 - 16 May 1997,
p- 2467

Operational tools and operators’ view

