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Abstract 
MedAustron is a centre for ion-therapy and research in 

currently under construction in Austria. It features a 
synchrotron particle accelerator for proton and carbon-ion 
beams. This paper presents the architecture and concepts 
for implementing a procedure framework called ProShell. 
Procedures to automate high level control and analysis 
tasks for commissioning and during operation modelled 
with Petri-Nets and user code is implemented with C#. It 
must be possible to execute procedures and monitor their 
execution progress remotely. Procedures include starting 
up devices and subsystems in a controlled manner, 
configuring, operating O(1000) devices and tuning their 
operational settings using iterative optimization 
algorithms. Device interfaces must be extensible to 
accommodate yet unanticipated functionalities. The 
framework implements a template for procedure specific 
graphical interfaces to access device specific information 
such as monitoring data. Procedures interact with physical 
devices through adapter software components that 
implement one of the following interfaces: (1) state-less 
or (2) state-driven device interface. Components can 
extend these device interfaces following an object-
oriented single inheritance scheme to provide augmented, 
device-specific interfaces. As only two basic device 
interfaces need to be defined at an early project stage, 
devices can be integrated gradually as commissioning 
progresses. We present the architecture and design of 
ProShell and explain the programming model by giving 
the simple example of the ion source spectrum analysis 
procedure. 

INTRODUCTION 
MedAustron [1] [2] is an ion therapy and research 

centre presently under construction in Wiener Neustadt, 
Austria. The facility features a synchrotron-based 
accelerator (Figure 1) with up to 5 ion sources for 
protons, carbon ions and possibly other light ions. It will 
provide ion beams with energies up to 800MeV to 5 beam 
lines, one of which is a rotating proton gantry. 

The Procedure Shell Execution Framework (ProShell) 
is a C# application to automate high level control and 
analysis tasks for commissioning and during operation. 
Each task called a procedure implements a standardized 
procedure interface and is deployed as .NET assembly 
(shared objects). Key features of the ProShell are: 
 Allocating resources on behalf of a procedure. 
 Uniform access to system, software and physical 

devices independent of communication protocols 
for monitoring and control purposes. 

 Reception and visualization of device 
measurements 

 Management of generic procedure lifecycle and 
custom procedure workflow. 

 Parallel execution of multiple procedures 
 Automatic procedure execution without user 

intervention 
 Manual procedure execution to step through the 

procedure specific workflow. 
 Provide access to control system services hiding 

implementation specific interfaces and 
communication protocols. 

Figure 1: MedAustron accelerator layout. 
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Figure 2: General ProShell architecture and main communication partners. 

ARCHITECTURE 

Overview 
ProShell is a framework to dynamically load and 

execute procedures implemented as C# classes. As 
outlined in Figure 2 it provides access to system, software 
and physical devices for monitoring and control purposes. 
These services are accessible from ProShell through 
service-specific Driver objects that are used internally and 
are not directly accessible from the loaded procedures: 
 Virtual Accelerator Allocator (VAA) is the 

scheduler of the system that allocates resources for 
exclusive usage on behalf of a user application. 

 WinCC OA is a Supervisory Control and Data 
Acquisition (SCADA) tool from Siemens [5]. It 
acts as the main communication backbone between 
user interfaces and procedures on tier 1 and 
frontend controllers and devices on tier 3 [7]. 

 MAPS services are a set of data servers 
implementing a publisher subscriber protocol. It 
forwards measurements and main timing 
information from front-end controllers to user 
applications in non-real-time. 

 Main Timing System (MTS) generates events for 
beam generation that are delivered to the frontend 
controllers with a precision of 100ns [4]. 

In MedAustron the last three services provide a 
communication channel to the frontend controllers 
running on National instruments PXI crates. Each 
frontend controller can host multiple frontend devices that 
implement device specific tasks in LabView to control the 
connected physical device. They also provide a unified 
interface to WinCC OA through a shared variable OPC 
server and may emit fast monitoring data through MAPS. 

Procedure 
A Procedure encapsulates specific repetitive control 

and processing tasks for operation and commissioning 
written in C#. It is compiled into a .NET assembly (shared 
library) and implements a common interface to be 
managed by the ProcedureContext independent of its task. 

Procedures may call any available C# functions and 
libraries. However, procedures should mainly use the API 
provided by the ProcedureContext to interact with system 
devices and services. 

Procedure Context 
ProShell encapsules execution of procedure instances in 

separate ProcedureContexts. Each ProcedureContext acts 
as a container that provides coordinated access to devices 
and control system services and manages the procedure 
lifecycle. Thus it provides the capability to execute 
procedures in parallel. In case of resource conflicts the 
VAA will delay the allocation of one procedure and 
subsequently ProShell will delay the execution of this 
procedure. As depicted in Figure 3 each 
ProcedureContext manages the following objects 
separately: 
 Procedure implements a specific control or 

processing task and provides a standardized 
interface to be controlled by the ProcedureContext. 

 ProcedureLifecycle handles the general lifecycle of 
the procedure that is common to all procedures. 

 PetriNetEngine is a workflow engine that executes 
the procedure specific workflow defined in a Petri 
Net Modelling Language (PNML) file [3]. 

 DeviceCache allocates resources on behalf of the 
procedure using the VAA driver and keeps a cache 
of C# adapter objects for communicating with the 
resources. 

  
Figure 3: Class diagram for object owned by the 
ProcedureContext. 
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Resources 
All device instances and types are represented in 

WinCC OA as data points (DP) and data point types 
(DPT). In addition each DPT contains a set of data point 
elements (DPE) that are name-value pairs with a defined 
value type. Each device implements one of the following 
interfaces: 
 BasicDevice is a state-less front-end device 

interface that only provides a minimal set of DPEs 
for monitoring. 

 StateDrivenDevice (SDD) is a state-driven front-
end device interface that extends the BasicDevice 
with additional DPEs to provide an interface for 
commanding and login to guarantee exclusive 
access to a device. 

WinCC OA also provides two special resource types to 
control a set of devices concurrently through a single 
virtual device: 
 Working Set (WS) is a virtual device that 

implements the SDD interface and controls a set of 
SDDs. 

 Virtual Accelerator (VAcc) controls a set of 
Working Sets and subsequently a set of devices. It 
also implements the SDD interface. In addition a 
VAcc also contains a dynamically assigned Main 
Timing Generator that allows a procedure to emit 
timing information for beam generation with an 
accuracy of 100ns. 

Resource Adapters 
ProShell encapsulates communication over a number of 

different communication technologies, shielding 
procedures from the underlying addressing and 
communication specifics by providing devices as object 
that follow the adapter pattern [6]. 

 
Figure 4: Class diagram of resources adapters for devices, 
Working Sets and Virtual Accelerators. 

Adapter objects provide an object-oriented API that 
implement BasicDevice or StateDrivenDevice interfaces 
as shown in Figure 4. Each device exposes a number of 
elements and functions: 
 Elements wrap a single name-value pair (i.e. DPE) 

independent of communication protocol using a 
specific Driver internally. Classes implementing 
the element interface provide data type conversion 
for complex data types and client-side validity 
checks not supported by WinCC OA. 

 Functions provide access to multiple Elements that 
require a specific workflow when reading or 
writing. In this case the Elements will be available 
only as protected fields within the device adapter. 

General Procedure Lifecycle 
The ProcedureLifecycle manages the lifecycle part, 

which is the same for all procedures following the state 
machine depicted in Figure 5. 

When a procedure is opened a new ProcedureContext is 
created, the procedure specific PNML file is loaded and 
the state is moved to Hold. At this time no resources are 
allocated. 

Subsequently the user can issue the Initialize transition 
to request the allocation of the specified resources from 
the VAA. The procedure lifecycle state moves to Ready 
when all resources have been allocated. 

Thereafter the user may emit an Enable transition that 
parameterizes the procedure specific Petri net and moves 
the state machine into Op state. While in Op state the 
procedure specific Petri net can be executed in steps or 
run until termination. 

The Disable transition stops the execution of the 
PetriNet and the Finalize transition releases all allocated 
resources. If an error is detected, the state moves to 
Failed and a subsequent Clear transition stops the petri 
net and releases all resources.  

 

Figure 5: Procedure Context Lifecycle. 

Petri Net 
The Petri net for each procedure is specified in a Petri 

net modelling language (PNML) file [3]. The 
implemented petri net engine extends the standard petri 
net defined in PNML with the following functionalities: 
 Support coloured tokens to pass data between 

transitions. 
 Attaching callback functions to transitions to 

execute procedure specific code. 
 Extension for asynchronous execution by putting 

tokens into places programmatically during 
runtime. This is symbolized in the PNML with 
asynchronous arcs (dashed lines). 
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BEAM SPECTRUM ANALYSIS 
The ion source beam spectrum analysis procedure 

detects the particles types generated by a specific ion 
source. Therefore a current is applied to the bending 
magnet and the generated field deflects the generated 
particles depending on the particle mass. The energy of 
the particles that hit the following faraday cup is 
measured. Due to the correlation of current to particle 
type, the generated particles can be detected with peak 
detection algorithm on the energy over current plot. 
public override void OnEnable()
{ 
 _faradayCup.Move(true, 20); 
 PetriNet net = Context.PetriNet; 
 net.BindParameter("n", (uint)Currents.Cur.Count); 
 IPlace place = net.GetPlace("conf"); 
 foreach (Tuple<double> current in Currents.Cur) 
 { 
   CurrentToken token = new CurrentToken() 
   { Current = current.Item1 }; 
   place.AddInitialToken(token); 
 } 
 Context.PetriNet.Trigger(); 
} 

Figure 6: Enable transition for beam spectrum analysis. 

This procedure will allocate an ion source working set 
containing the power converter for the bending magnet 
and the following faraday cup during the Initialize 
transition. The subsequent Enable transition as depicted 
in Figure 6 moves the faraday cup into the beam line and 
configured the conf place with n current tokens. 

 
Figure 7: Ion source beam spectrum measurement with 
synchronous arcs (solid lines) and asynchronous arcs 
(dashed lines). 

After the procedure was brought into Op state, the Petri 
net depicted in Figure 7 becomes active. The Petri net 
engine will remove a token from conf and start places and 
fire the configure transition (Figure 8) that applies the 
current specified in the token from the conf place. When 
the set-point was reached a token will be put into the 
positioned place and subsequently the measure transition 
is fired. During this transition the faraday cup is 
instructed to perform a measurement that will be put 
asynchronously as a token into the measured place. 
private void Configure(PetriNet petrinet, 
  ITransition transition, 
  Dictionary<IArc, Queue<IToken>> input, 
  Dictionary<IArc, Queue<IToken>> output) 
{ 
 List<CurrentToken> tokens = 
  petrinet.GetTokens<CurrentToken>(input); 
 if (tokens.Count == 1) 
 { 
  var cycleToken = (CurrentToken) token; 
  _pcc.CurrentAqn.Subscribe( 
   petrinet.GetPlace("positioned"), token[0].Current); 
  _pcc.CurrentCcv.Value = token[0].Current; 
  petrinet.GenerateTokens(output); 
 } 
} 

Figure 8: Petri net callback function for conf transition. 

After a measurement has been performed for each 
current token in the conf place, n tokens with 
measurement results will be available in the measurement 
place and the analyze transition will be fired. This 
transition will plot the measurements and performs a peak 
detection to detect the generated particles. 

SUMMARY 
This article presented the architecture and selected 

architecture significant components of the MedAustron 
Procedure Shell Execution Framework. The application 
follows a container-based approach where each procedure 
is executed in its own sandbox. Accelerator devices are 
controlled and monitored through resource adapter 
objects that provide an object oriented API to hide 
communication specific details. 

Integration with the main systems (WinCC OA, MTS, 
VAA and MAPS) has been concluded. First tests have 
been carried out in the MedAustron test column with the 
presented procedure and generic procedures that execute 
beam cycles using physical devices where available and 
emulating not-available devices through WinCC OA 
scripts. These tests have shown that generic tasks such as 
allocation, data conversion and validity checks can be 
encapsulated in ProShell to provide a simplified interface 
for procedures and that the Petri net provides valuable 
feedback for the currently running procedure. 

Next steps for ProShell include extending element 
classes for additional protocols, and specifying and 
implementing adapter objects and procedures required for 
commissioning and during operations. 
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