
PROSHELL – THE MEDAUSTRON ACCELERATOR CONTROL
PROCEDURE FRAMEWORK

R. Moser, A. B. Brett, M. Marchhart, C. Torcato de Matos, EBG MedAustron, Wr.Neustadt, Austria
J. Gutleber, CERN, Geneva, Switzerland

J. Dedič, S. Sah, Cosylab, Ljubljana, Slovenia

Abstract
MedAustron is a centre for ion-therapy and research in

currently under construction in Austria. It features a
synchrotron particle accelerator for proton and carbon-ion
beams. This paper presents the architecture and concepts
for implementing a procedure framework called ProShell.
Procedures to automate high level control and analysis
tasks for commissioning and during operation modelled
with Petri-Nets and user code is implemented with C#. It
must be possible to execute procedures and monitor their
execution progress remotely. Procedures include starting
up devices and subsystems in a controlled manner,
configuring, operating O(1000) devices and tuning their
operational settings using iterative optimization
algorithms. Device interfaces must be extensible to
accommodate yet unanticipated functionalities. The
framework implements a template for procedure specific
graphical interfaces to access device specific information
such as monitoring data. Procedures interact with physical
devices through adapter software components that
implement one of the following interfaces: (1) state-less
or (2) state-driven device interface. Components can
extend these device interfaces following an object-
oriented single inheritance scheme to provide augmented,
device-specific interfaces. As only two basic device
interfaces need to be defined at an early project stage,
devices can be integrated gradually as commissioning
progresses. We present the architecture and design of
ProShell and explain the programming model by giving
the simple example of the ion source spectrum analysis
procedure.

INTRODUCTION
MedAustron [1] [2] is an ion therapy and research

centre presently under construction in Wiener Neustadt,
Austria. The facility features a synchrotron-based
accelerator (Figure 1) with up to 5 ion sources for
protons, carbon ions and possibly other light ions. It will
provide ion beams with energies up to 800MeV to 5 beam
lines, one of which is a rotating proton gantry.

The Procedure Shell Execution Framework (ProShell)
is a C# application to automate high level control and
analysis tasks for commissioning and during operation.
Each task called a procedure implements a standardized
procedure interface and is deployed as .NET assembly
(shared objects). Key features of the ProShell are:
 Allocating resources on behalf of a procedure.
 Uniform access to system, software and physical

devices independent of communication protocols
for monitoring and control purposes.

 Reception and visualization of device
measurements

 Management of generic procedure lifecycle and
custom procedure workflow.

 Parallel execution of multiple procedures
 Automatic procedure execution without user

intervention
 Manual procedure execution to step through the

procedure specific workflow.
 Provide access to control system services hiding

implementation specific interfaces and
communication protocols.

Figure 1: MedAustron accelerator layout.

MOPMN005 Proceedings of ICALEPCS2011, Grenoble, France

246C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Operational tools and operators’ view

P
ro

S
he

ll

Procedure

SCADA

MAPS
Front End
Controller

Virtual
Accelerator

Allocator

Main Timing
System

Figure 2: General ProShell architecture and main communication partners.

ARCHITECTURE

Overview
ProShell is a framework to dynamically load and

execute procedures implemented as C# classes. As
outlined in Figure 2 it provides access to system, software
and physical devices for monitoring and control purposes.
These services are accessible from ProShell through
service-specific Driver objects that are used internally and
are not directly accessible from the loaded procedures:
 Virtual Accelerator Allocator (VAA) is the

scheduler of the system that allocates resources for
exclusive usage on behalf of a user application.

 WinCC OA is a Supervisory Control and Data
Acquisition (SCADA) tool from Siemens [5]. It
acts as the main communication backbone between
user interfaces and procedures on tier 1 and
frontend controllers and devices on tier 3 [7].

 MAPS services are a set of data servers
implementing a publisher subscriber protocol. It
forwards measurements and main timing
information from front-end controllers to user
applications in non-real-time.

 Main Timing System (MTS) generates events for
beam generation that are delivered to the frontend
controllers with a precision of 100ns [4].

In MedAustron the last three services provide a
communication channel to the frontend controllers
running on National instruments PXI crates. Each
frontend controller can host multiple frontend devices that
implement device specific tasks in LabView to control the
connected physical device. They also provide a unified
interface to WinCC OA through a shared variable OPC
server and may emit fast monitoring data through MAPS.

Procedure
A Procedure encapsulates specific repetitive control

and processing tasks for operation and commissioning
written in C#. It is compiled into a .NET assembly (shared
library) and implements a common interface to be
managed by the ProcedureContext independent of its task.

Procedures may call any available C# functions and
libraries. However, procedures should mainly use the API
provided by the ProcedureContext to interact with system
devices and services.

Procedure Context
ProShell encapsules execution of procedure instances in

separate ProcedureContexts. Each ProcedureContext acts
as a container that provides coordinated access to devices
and control system services and manages the procedure
lifecycle. Thus it provides the capability to execute
procedures in parallel. In case of resource conflicts the
VAA will delay the allocation of one procedure and
subsequently ProShell will delay the execution of this
procedure. As depicted in Figure 3 each
ProcedureContext manages the following objects
separately:
 Procedure implements a specific control or

processing task and provides a standardized
interface to be controlled by the ProcedureContext.

 ProcedureLifecycle handles the general lifecycle of
the procedure that is common to all procedures.

 PetriNetEngine is a workflow engine that executes
the procedure specific workflow defined in a Petri
Net Modelling Language (PNML) file [3].

 DeviceCache allocates resources on behalf of the
procedure using the VAA driver and keeps a cache
of C# adapter objects for communicating with the
resources.

Figure 3: Class diagram for object owned by the
ProcedureContext.

Proceedings of ICALEPCS2011, Grenoble, France MOPMN005

Operational tools and operators’ view 247 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Resources
All device instances and types are represented in

WinCC OA as data points (DP) and data point types
(DPT). In addition each DPT contains a set of data point
elements (DPE) that are name-value pairs with a defined
value type. Each device implements one of the following
interfaces:
 BasicDevice is a state-less front-end device

interface that only provides a minimal set of DPEs
for monitoring.

 StateDrivenDevice (SDD) is a state-driven front-
end device interface that extends the BasicDevice
with additional DPEs to provide an interface for
commanding and login to guarantee exclusive
access to a device.

WinCC OA also provides two special resource types to
control a set of devices concurrently through a single
virtual device:
 Working Set (WS) is a virtual device that

implements the SDD interface and controls a set of
SDDs.

 Virtual Accelerator (VAcc) controls a set of
Working Sets and subsequently a set of devices. It
also implements the SDD interface. In addition a
VAcc also contains a dynamically assigned Main
Timing Generator that allows a procedure to emit
timing information for beam generation with an
accuracy of 100ns.

Resource Adapters
ProShell encapsulates communication over a number of

different communication technologies, shielding
procedures from the underlying addressing and
communication specifics by providing devices as object
that follow the adapter pattern [6].

Figure 4: Class diagram of resources adapters for devices,
Working Sets and Virtual Accelerators.

Adapter objects provide an object-oriented API that
implement BasicDevice or StateDrivenDevice interfaces
as shown in Figure 4. Each device exposes a number of
elements and functions:
 Elements wrap a single name-value pair (i.e. DPE)

independent of communication protocol using a
specific Driver internally. Classes implementing
the element interface provide data type conversion
for complex data types and client-side validity
checks not supported by WinCC OA.

 Functions provide access to multiple Elements that
require a specific workflow when reading or
writing. In this case the Elements will be available
only as protected fields within the device adapter.

General Procedure Lifecycle
The ProcedureLifecycle manages the lifecycle part,

which is the same for all procedures following the state
machine depicted in Figure 5.

When a procedure is opened a new ProcedureContext is
created, the procedure specific PNML file is loaded and
the state is moved to Hold. At this time no resources are
allocated.

Subsequently the user can issue the Initialize transition
to request the allocation of the specified resources from
the VAA. The procedure lifecycle state moves to Ready
when all resources have been allocated.

Thereafter the user may emit an Enable transition that
parameterizes the procedure specific Petri net and moves
the state machine into Op state. While in Op state the
procedure specific Petri net can be executed in steps or
run until termination.

The Disable transition stops the execution of the
PetriNet and the Finalize transition releases all allocated
resources. If an error is detected, the state moves to
Failed and a subsequent Clear transition stops the petri
net and releases all resources.

Figure 5: Procedure Context Lifecycle.

Petri Net
The Petri net for each procedure is specified in a Petri

net modelling language (PNML) file [3]. The
implemented petri net engine extends the standard petri
net defined in PNML with the following functionalities:
 Support coloured tokens to pass data between

transitions.
 Attaching callback functions to transitions to

execute procedure specific code.
 Extension for asynchronous execution by putting

tokens into places programmatically during
runtime. This is symbolized in the PNML with
asynchronous arcs (dashed lines).

Hold

Ready

Op

Failed

Open

Initialize

Enable Disable

Finalize

Clear

Close

Step, Run, Pause

Fault

MOPMN005 Proceedings of ICALEPCS2011, Grenoble, France

248C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Operational tools and operators’ view

BEAM SPECTRUM ANALYSIS
The ion source beam spectrum analysis procedure

detects the particles types generated by a specific ion
source. Therefore a current is applied to the bending
magnet and the generated field deflects the generated
particles depending on the particle mass. The energy of
the particles that hit the following faraday cup is
measured. Due to the correlation of current to particle
type, the generated particles can be detected with peak
detection algorithm on the energy over current plot.
public override void OnEnable()
{
 _faradayCup.Move(true, 20);
 PetriNet net = Context.PetriNet;
 net.BindParameter("n", (uint)Currents.Cur.Count);
 IPlace place = net.GetPlace("conf");
 foreach (Tuple<double> current in Currents.Cur)
 {
 CurrentToken token = new CurrentToken()
 { Current = current.Item1 };
 place.AddInitialToken(token);
 }
 Context.PetriNet.Trigger();
}

Figure 6: Enable transition for beam spectrum analysis.

This procedure will allocate an ion source working set
containing the power converter for the bending magnet
and the following faraday cup during the Initialize
transition. The subsequent Enable transition as depicted
in Figure 6 moves the faraday cup into the beam line and
configured the conf place with n current tokens.

Figure 7: Ion source beam spectrum measurement with
synchronous arcs (solid lines) and asynchronous arcs
(dashed lines).

After the procedure was brought into Op state, the Petri
net depicted in Figure 7 becomes active. The Petri net
engine will remove a token from conf and start places and
fire the configure transition (Figure 8) that applies the
current specified in the token from the conf place. When
the set-point was reached a token will be put into the
positioned place and subsequently the measure transition
is fired. During this transition the faraday cup is
instructed to perform a measurement that will be put
asynchronously as a token into the measured place.
private void Configure(PetriNet petrinet,
 ITransition transition,
 Dictionary<IArc, Queue<IToken>> input,
 Dictionary<IArc, Queue<IToken>> output)
{
 List<CurrentToken> tokens =
 petrinet.GetTokens<CurrentToken>(input);
 if (tokens.Count == 1)
 {
 var cycleToken = (CurrentToken) token;
 _pcc.CurrentAqn.Subscribe(
 petrinet.GetPlace("positioned"), token[0].Current);
 _pcc.CurrentCcv.Value = token[0].Current;
 petrinet.GenerateTokens(output);
 }
}

Figure 8: Petri net callback function for conf transition.

After a measurement has been performed for each
current token in the conf place, n tokens with
measurement results will be available in the measurement
place and the analyze transition will be fired. This
transition will plot the measurements and performs a peak
detection to detect the generated particles.

SUMMARY
This article presented the architecture and selected

architecture significant components of the MedAustron
Procedure Shell Execution Framework. The application
follows a container-based approach where each procedure
is executed in its own sandbox. Accelerator devices are
controlled and monitored through resource adapter
objects that provide an object oriented API to hide
communication specific details.

Integration with the main systems (WinCC OA, MTS,
VAA and MAPS) has been concluded. First tests have
been carried out in the MedAustron test column with the
presented procedure and generic procedures that execute
beam cycles using physical devices where available and
emulating not-available devices through WinCC OA
scripts. These tests have shown that generic tasks such as
allocation, data conversion and validity checks can be
encapsulated in ProShell to provide a simplified interface
for procedures and that the Petri net provides valuable
feedback for the currently running procedure.

Next steps for ProShell include extending element
classes for additional protocols, and specifying and
implementing adapter objects and procedures required for
commissioning and during operations.

REFERENCES
[1] M. Benedikt, A. Wrulich, “MedAustron—Project

overview and status”, Eur. Phys. J. Plus (2011) 126:
69.

[2] M. Benedikt, A. Fabich, “MedAustron—Austrian
hadron therapy centre”, Nuclear Science Symposium
Conference Record 2008. NSS '08. IEEE, pp.5597-
5599, 19-25 Oct. 2008.

[3] J. Billington et al., “The Petri Net Markup Language:
Concepts, Technology, and Tools”, Proc. 24th Int.
Conf. Application and Theory of Petri Nets
(ICATPN’2003), Eindhoven, The Netherlands, June
2003.

[4] J. Dedic et al., “Timing System for MedAustron
Based on Off-The-Shelf MRF Transport Layer”, in
Proc. IPAC 2011.

[5] P. Golonka, M. Gonzales-Berges, “Integrated Access
Control for PVSS-Based SCADA Systems at
CERN”, in Proc. ICALEPCS 2009.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
“Design Patterns—Elements of Reusable Object-
Oriented Software”, Addison-Wesley, 1995.

[7] J. Gutleber et al., “The MedAustron Accelerator
Control System”, Proc. ICALEPCS, 2011.

Proceedings of ICALEPCS2011, Grenoble, France MOPMN005

Operational tools and operators’ view 249 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

