
A BOTTOM-UP APPROACH TO AUTOMATICALLY CONFIGURED
TANGO CONTROL SYSTEMS

S. Rubio-Manrique, D. Beltran*, I. Costa, D. Fernandez-Carreiras, J.V. Gigante, J. Klora,
 O. Matilla, R. Ranz*, J. Ribas*, O. Sanchez, CELLS-ALBA Synchrotron, Cerdanyola del Vallés,

Spain

Abstract
Alba maintains a central repository, so called "Cabling

and Controls database" (CCDB), which keeps the
inventory of equipment, cables, connections and their
configuration and technical specifications. The valuable
information kept in this MySQL database enables some
tools to automatically create and configure Tango devices
and other software components of the control systems of
Accelerators, beamlines and laboratories. This paper
describes the process involved in this automatic setup.

INTRODUCTION
ALBA is the first Synchrotron Light Source built in

Spain[1]. Its 3 GeV Storage Ring has been commissioned
during 2011, receiving in 2012 the first users for the 7
beam-lines. Most of ALBA control system [2] have been
developed on top of Tango Control System [3][4].

An amount of 5531 devices are controlled up-to-now in
ALBA accelerators (linac, booster and storage ring) using
150 control Linux PCs. Those devices are accessed from
the control system using several hardware interfaces
(ethernet, fiber optics, serial lines, GPIB, PLC inputs, …)
that had to be configured in the Tango database.

To populate the tango database, information related to
hardware configuration and connections has been
imported from ALBA's Cabling and Controls Database
(CCDB) [5]. The cabling database keeps information of
all hardware connections and the network configuration
of all ethernet equipments. We used this information
already in CCDB to automatize the creation and
configuration of several control subsystems, like vacuum,
front-ends, motor controllers and EPS [6]; speeding-up
the process and minimizing the errors.

THE CABLING AND CONTROLS
DATABASE

The Cabling and Controls database was developed in-
house by ALBA management and information software
section (MIS) to be used as the main knowledge support
for design, control, tendering, progress follow up and a
search tool providing multiple views of the system.

This MySQL database has been used since 2007 to
keep a knowledge base of all the equipments and devices
used at ALBA accelerators and beam-lines. The Cabling
database keeps all the information about equipment types,
cable configurations, connections between devices
distribution of hardware in racks, routing of cables
between equipment and network configuration. It also

provides fast access to all available documentation for
each type of equipment. It actually contains in 346 racks
with 6326 equipments of different 638 equipment types.
These equipments are connected using 17623 cables of
292 different cable types with a total length of 167,43
Km.

Figure 1: Diagrams of every subsystem have been
produced prior to its introduction in our cabling database.

Introducing Cables in the Cabling Database
Filling this database required and intensive effort by a

group of engineers (one dedicated to each subsystem).
They introduced most of the information in the cabling
database during 2008, although installation continues and
the database is updated almost daily. All the
documentation used to populate the database has been
kept attached to each equipment and rack; so it is possible
to download original diagrams (Fig. 1) and equipment
manuals from the CCDB web client (Fig. 2).

The maintenance of the database is managed by a group
of electronic engineers. Modification or insertion of new
cables in the database is done using spreadsheet files, that
contain source and destination equipment-terminal pairs
and cable types. Every file is cross-checked prior to
insertion to avoid errors and collision with previous data.

The Cabling Database API
The common method for visualization and modification

of information in the cabling database is the CCDB web
client. This tool browses all the information in the
database and provides many methods for viewing and
exporting the data to text files. The first integration with __

*On leave

Proceedings of ICALEPCS2011, Grenoble, France MOPMN003

Operational tools and operators’ view 239 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

the control system was based on reading these exported
files, but soon a better interaction was needed to
guarantee a system up-to-date.

Now the CCDB database becomes available to the
control system using the CCDB python API. This python
module provides methods to search for equipments and
get lists of connections, names and network information.
Some translation features have been added to the API to
store links between every Control and Hardware object,
this links will allow every single script to update or cross-
check the properties of a Control object from the CCDB.

Figure 2: The cabling database web client.

GENERATING A CONTROL SYSTEM

Creating Vacuum Controls Devices
The accelerators vacuum control, with 1496 devices, is

the largest control system in our Tango database. Creation
of vacuum devices have been done automatically for all
subsystems, using the cabling database python API to
extract all needed information and all connections
between equipments.

For each vacuum device (gauge, pump or valve) that
belongs to our accelerators we obtain:
 Port and controller reading the device.
 Serial line and Controls computer connected to the

controller
 PLC managing the pressure interlock
 Valves controlled by this interlock.

A Tango database entry is generated for each device
and every configuration value. We initially used the same
text format as Jive (the default Tango configuration tool),
but finally we moved to comma-separated values files. A
column based format allowed us more flexibility to add
some Tango information like device host and run-level.
These methods for massive insertion and modification of
Tango database have been added to functional-Tango [7]
python module, available from Tango repositories.

The architecture of hardware and software objects may
differ, not having a one-to-one conversion between
CCDB and Tango. The translation features of the API
allow to link a different Tango device with each

connector of a patch panel (e.g. serial lines) or link a
single complex devices with all the software controllers of
its parts (e.g. a single mirror translates into a group of
gauges, pumps, motors and thermocouples). This
translation allows to rebuild the whole control
architecture from the cabling.

Distributing Tango Devices in Control Hosts
The Tango devices (control software processes)

declared in our database are distributed in 150 PCs in our
racks area. Although the control of most equipments is
distributed by location (e.g. front-end devices are
controlled from dedicated front-end racks) some
subsystems have no dedicated racks and use spare ports of
other devices, optimizing the number of devices and
length of cabling connections.

Furthermore, every Tango process is assigned to a
particular host from the CCDB, following the connection
between the gauge in the tunnel to a controller in the rack
and then the serial line from the controller to the patch
panel of that particular industrial PC where the serial line
controller will be configured.

Configuring Devices
There are many parameters that are configured in the

Tango control database using the information updated
from the CCDB. The most common is the number of
ports to be used in those devices that have multiple
configurations (serial lines, ADC´s, ion pump splitters),
the device configuration will get this value from the
CCDB to configure which channels will be used and
which will be ignored when connecting to the hardware.
Also dynamic attributes will be created for used channels
only.

Another example are the sizes of ion pump, this value
will be used by the control system when converting the
current readings to an estimated pressure value. In some
cases the sizes of ion pumps change. For example, when
vacuum sections are replaced by insertion devices. These
changes must be updated in the Tango database and the
information is queried from CCDB.

Information relative to networking (IP, masks, host-
names, routing) helped to control or update existing
hardware that is interfaced with the control system using
TCP/IP. This allows to check and restore the status of
these devices (splitters, Icepaps, DAQs,) after a powercut.

Keeping the Databases up to date.
During the last year several modifications have been

done in our accelerators. Diagnostic elements have been
moved and several vacuum chambers have been replaced
by new insertion devices. These changes required to
modify racks and cables and introduce the new equipment
and connections in the graphical applications.

In case that any change of the routing is done, the
technicians will update the information in the CCDB and
the control system can detect the change and advice to
update it. New CSV files, containing device names and all
its property values, are extracted from either CCDB or

MOPMN003 Proceedings of ICALEPCS2011, Grenoble, France

240C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Operational tools and operators’ view

Tango databases and are compared to detect missing
information, errors or not applied changes.

INTERACTION WITH GRAPHICAL
INTERFACES

The information available in the cabling database is
used to extend the displays of the control system and
allocate equipments in generic browsers. The cabling API
enables applications to sort and search by location of
controllers or by location of the gauges connected to them
(racks and equipments in tunnel don't follow the same
name). It allows to group equipments affected by same
logics and also make them findable in the racks area when
searching for problems.

Figure 3: Tango devices can be shown in trees using the
physical connections between equipments.

This extra information is added to the GUI's in two ways:
 In the Tango Database, adding cabling names as

aliases of devices or labels of attributes (Fig. 4).
 In cabling-enabled widgets, browsing widgets (Fig. 3

and Fig. 5) that translate Tango names into CCDB to
group the devices or attributes using their location or
connections.

Figure 4: Names of vacuum gauge ports are labelled with
the tag of the device connected to them.

When ports of a same controller are used to read
different equipments (e.g. an in-vacuum mono-chromator

and a mirror separated by valves) the grid widget (Fig. 5)
scans the controllers in the vacuum rack and then it
obtains the experimental instrument connected to each
port. This information is used to reorganize values in
panels and assign labels to pressure values.

Figure 5: Labels from cabling are used to group in grids
the experimental equipment pressures.

CONCLUSIONS
Automated creation and configuration of big Control

systems is a recurrent topic due to its applications in big
facilities, reducing the amount of work and human errors
when configuring thousands of devices. Acquiring and
maintaining a cabling database is hard to do in a running
facility, but it is a unique opportunity for new machines as
this kind of database is a valuable tool at all levels.

An important application of automated configuration is
the fine-tuning of the whole control system, modifying
configuration parameters in many devices at the same
time (new time-outs in all serial lines, different polling
period in different groups of devices, update all host
names at once). We used it during commissioning to
optimize our control system performance, having also a
fast way to do configuration roll-back.

We have now an automated way to load new values to
all properties: reducing the time needed to deploy generic
systems in beam-lines or adding subsystems once the
machine was already operating (insertion devices). A lot
of work has been saved and a lot of extra information
became available to users.

REFERENCES

[1] D. Einfeld, “Progress of ALBA”, EPAC-2008, Genoa, Italy
[2] D. Fernández et al. “Alba, a Tango based Control System in

Python”, ICALEPCS'09, Kobe, Japan.
[3] A. Götz, E.Taurel, J.L. Pons, P. Verdier, J.M. Chaize, J.

Meyer, F. Poncet, G. Heunen, E. Götz, A. Buteau, N.
Leclercq, M. Ounsy, “TANGO a CORBA based Control
System”, ICALEPCS'03, Gyeongju, Korea

[4] http://www.tango-controls.org
[5] D. Beltran, et al. “ ALBA CONTROL & CABLING

DATABASE ”, ICALEPCS'09, Kobe, Japan.
[6] D. Fernández et al. “Personnel protection, equipment

protection and fast interlock systems.”, Icalepcs'11.
Grenoble, France

[7] S. Rubio et al., “Dynamic Attributes and other functional
flexibilities of PyTango”, ICALEPCS 2009, Kobe, Japan

Proceedings of ICALEPCS2011, Grenoble, France MOPMN003

Operational tools and operators’ view 241 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

