
BDNLS - BESSY DEVICE NAME LOCATION SERVICE

D. Engel, P. Laux, R. Müller, HZB, Berlin, Germany

Abstract

Initially the relational database (RDB) for control sys-
tem configuration at BESSY has been built around the de-
vice concept [1]. Maintenance and consistency issues as
well as complexity of scripts generating the configuration
data, triggered the development of a novel, generic RDB
structure based on hierarchies of named nodes with at-
tribute/value pairs [2]. Unfortunately, it turned out that
usability of this generic RDB structure for a comprehen-
sive configuration management relies on sophisticated data
maintenance tools. On this background BDNLS, a new
database management tool, is currently under development
using the framework of the Eclipse Rich Client Platform.
It uses the Model View Controller (MVC) layer of JFace to
cleanly separate retrieval processes, data path, data visual-
ization and actualization. It is based on extensible config-
urations defined in XML allowing to chain SQL calls and
compose profiles for various cases. It solves the problem
of data key forwarding to the subsequent SQL statement.
BDNLS has the potential to map various levels of complex-
ity into the XML configurations. This provides usable, tai-
lored database access to configuration maintainers for dif-
ferent underlying database structures. Based on Eclipse,
the integration of BDNLS into Control System Studio [3]
is straight forward.

HISTORY OF CONCEPT

Views – The First Approach

Database-views are predefined SQL-queries. They are
like macros with precached results. Views are ideal for fre-
quently used large and complex queries typically used in
small database-applications. A big drawback of views is,
that they are not always able to update their data sources.
Views are able to hide the complexity of data structures,
but you have to create one view for one specific problem.
If you need to create views for all aspects of a facility, then
you need hundreds of them. Complexity of data structures
is pseudo-simplified in a confusing amount of views.

Generalization of the Data Structure

The obvious idea to maintain full flexibility, was to sep-
arate the data sets to the maximum, like atomic elements.
For that purpose, the whole data set, for example device
properties or I/O specifics, has to be to modeled in data
and relations. The data is not grouped by table structures
or specific column names. Only links and relations con-
nect the data. This is a clean method to retain the data and
avoid redundancy. This data structure has been called Gad-

gets [4]. This solution has the drawback, that you manage
a very complex structure of stored data. Visualizing and
managing the data is problematic because it is abstract and
queries on this structure are very complex. It is not a gen-
eral solution for storing data.

The Experiences from a Prototype

The first graphical application was implemented using
Eclipse as a Rich Client Platform (RCP) application. RCP
provides many solutions of graphical interfaces and a plu-
gin concept to assemble numerous small plugins to a full-
featured application. The application was designed as well
as a standalone Rich Client Application and as plugin for
other Rich Client Applications like the Control System Stu-
dio (CSS) [3] Framework. The application is able to pro-
vide the location of a device and to view their properties
as requested. This solution used static SQL-queries and a
special view that provided all information for a complete
navigation tree, broken into columns. Updates of the data
is only possible with hard coded update-dialogs. Another
drawback of this approach was, that data could only be up-
dated using the dialogs provided.

The Generalized Approach

The first graphical approach revealed with following
shortcomings:

• Search, read, change and insert elements in the
database without knowledge of SQL by the user.

• Importing and exporting huge data sets.
• The profile contains the navigation chain to a target

element, the element properties, the wizards1 and the
popup-menus available for this target.

• The profiles should be able to change during opera-
tion.

• The complexity of data structures and SQL-queries is
extracted from the source code and encapsulated to a
configuration file. The source code is generic.

• The application should be independent of the given
data structure. You can design your own SQL-queries
in the configuration file.

• With the use of Java, a platform independent applica-
tion is provided.

• The application uses existing databases and no hard
coded data structures. It is also not designed to fol-
low all data relations given by data keys hence it is no
competitor of IRMIS [5].

1A Wizard is a user interface of dialogs to help the user to manage
complex inputs

MOPKN027 Proceedings of ICALEPCS2011, Grenoble, France

154C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management



Figure 1: BDNLS prototype application; Profile selector (top), tree navigation (left), view section (right), the query section
not visible.

XML CONFIGURATION CONCEPT

The whole configuration of the BDNLS-application is
defined in an XML-file. The configuration file contains:

• How to access the database (URL, user name and the
password).

• Definition of various profiles allowing several SQL-
query sequences and different views.

• The displayed element and the data key provided by
the SQL-Query.

• The definition of the navigation tree (-by profile-) and
the data keys required for next tree element.

• The provided properties of a selected device, arrange-
ment, grouping and visualization settings.

• The popup-menus and wizards provided for a device.

Profiles

A profile defines the navigation to a device and its
specific properties. profile names are declared in the
<profile>-part. The default profile used when the appli-
cation starts.

<profiles default="1">

<profile>located names</profile>

<profile>typed names</profile>

<profile>typed devices</profile>

<profile>by facility and family</profile>

</profiles>

Navigation

The navigation section is divided in to different pro-
files. Every profile consists of the parts <tree> (shown
as a tree elements) and <tab> (shown as tab elements).
The tree-part is used to display and to navigate through

device classes, domains, families and facilities. <link>-
parts are called sequentially when expanding a tree ele-
ment. <link bind="xxx"> is used to narrow the results
at the next hierarchy, using the keys from the last results.
Clicking at the last element in the tree-part, initiates pro-
cessing of the tab-part.
<navigation>

<profile name="located names">

<tree>

<link>facility</link>

<link bind="FACILITY_KEY">cs-domain</link>

<link bind="NAME_DOMAIN_KEY">cs-subdomain</link>

<link bind="NAME_SUBDOMAIN_KEY">cs-name</link>

</tree>

<tab>

<link bind="NAME_KEY">device-info</link>

<link bind="NAME_KEY">device-location</link>

<link bind="NAME_KEY">device--value</link>

</tab>

</profile>

</navigation>

Query Section
The query section describes the name of the query, the

corresponding statement <statement>, the provided key
names <key> of the query and the column name to be
shown as the element name<label>. The provided keys
are stored and can be used to narrow the results of the next
query. A statement may yield zero, one or many keys, they
are separated by a comma.
<link name="cs-subdomain">

<statement>NAME_SUBDOMAIN_DROPDOWN</statement>

<key>NAME_SUBDOMAIN_KEY</key>

<label>NAME</label>

</link>

View Section
Currently, the view section is only used for the prop-

erties of a device. The view part defines the name of

Proceedings of ICALEPCS2011, Grenoble, France MOPKN027

Data and information management 155 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



a tab <title>, whatether it shown as a form or a list
<showtype> and which type of context menus the ele-
ments provides <showmenu>. Additionally, the output can
be filtered by a group query. To group/filter the device
properties, you have to define a group statement <group>
and a grouping/filter key that is used to restrict the results
of the device properties. To restrict the group statement
itself, you can restrict the statement with another key pro-
vided by the device properties.<groupbindkeys> The tag
<showmenu> links to the required popup-menus.

<view>

<tab name="device-value">

<title>Values</title>

<group>DEVICE_APPLICATION</group>

<groupbindkeys>DEVICE_KEY</groupbindkeys>

<groupkey>DEVICE_APPLICATION_KEY</groupkey>

<showtype>List</showtype>

<showmenu>device-value</showmenu>

</tab>

</view>

Popup and Wizard Block

Manipulation of the data, is enabled by an update or in-
put wizard defined within the popup tag <popup>. The key
expected by the wizard is defined with the tag <column>.

<popup name="device-value">

<item name="create">

<wizard>wizard-device-value</wizard>

<column>device_key</column>

</item>

<item name="edit">

<editor>editor-device-value</editor>

<column>device_value_key</column>

</item>

<item name="remember">

<history>history-device-value</history>

<column>device_value_key</column>

</item>

</popup>

IMPLEMENTATION

The Eclipse Rich Client Platform was chosen for im-
plementation. By using and providing plugin extension
points, it is possible to use other Eclipse based or third
party plugins to extend the application. To connect to the
database, a JDBC interface is used. The connection class
can load many kinds of JDBC bridges dynamically, like
PostgreSQL, MySQL, Oracle and many more. But at the
moment only a Oracle OJDBC bridge is integrated in this
project. The GUI of the first implementation of this project
is shown in Figure 1.

CSS Integration

Adding the plugin-activator class allows to integrate this
application as a plugin in CSS. Hence it is possible to ex-
change EPICS [6] process variables (PV) with CSS, to re-
trieve archived data, or to get all device information de-
pending on a PV.

FUTURE DEVELOPMENT

• Implementation of drag & drop methods to improve
the data exchange with CSS, other windows/forms
and applications.

• Integration of visualization function, for example to
show the location of a device.

• Integration of EPICS-PVs for fast visualization of the
device state.

• Abstraction of the wizards to be fully configurable and
provide plugin extension points for custom forms and
visualization classes.

• Methods providing import and export formats for
CSV, XML and XLS.

• Provide more JDBC Interfaces.

REFERENCES

[1] T. Birke et al., “Relational Database for Controls Configura-
tion Management”, IADBG Workshop 2001, San Jose, CA,
USA.

[2] T. Birke et al., “Beyond Devices – An improved RDB
Data-model for Configuration Management”, PO1.078-7,
ICALEPCS’05, Geneva, Switzerland.

[3] Jan Hatje, M. Clausen et al., “Control System Studio (CSS)”,
MOPB03, ICALEPCS’07, Knoxville, Tennessee, USA, http:
//cs-studio.sourceforge.net.

[4] T. Birke et al., “Introducing I/O Channels into the Device
Database Open new Potentialities for Configuration Manage-
ment”, WEDT003, ICALEPCS’01, San Jose, CA, USA.

[5] D.A. Dohan, “The IRMIS Universal Component-Type
Model”, TOPA03, ICALEPCS’07, Knoxville, Tennessee,
USA, http://aps.anl.gov/epics/irmis/index.php.

[6] http://www.aps.anl.gov/epics/

MOPKN027 Proceedings of ICALEPCS2011, Grenoble, France

156C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management


