
EXTENDING ALARM HANDLING IN TANGO

S. Rubio-Manrique, F. Becheri, D.Fernandez-Carreiras, J.Klora, L.Krause*, A.Milán Otero,
Z.Reszela, P.Skorek, CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain

Abstract
This paper describes the alarm system developed at

Alba Synchrotron, built on Tango Control System. It
describes the tools used for configuration and
visualization, its integration in user interfaces and its
approach to alarm specification; either assigning discrete
Alarm/Warning levels or allowing versatile logic rules in
Python. This paper also covers the life cycle of the alarm
(triggering, logging, notification, explanation and
acknowledge) and the automatic control actions that can
be triggered by the alarms.

INTRODUCTION
ALBA is the first Synchrotron Light Source built in

Spain [1]. Its 3 GeV Storage Ring has been commissioned
during 2011 and it's expecting the first beam-line users for
beginning 2012. Control of ALBA [2] is based on Tango,
a modern control system for scientific facilities developed
by the ESRF and maintained by the members of the
Tango Collaboration [3]. Tango provides a collection of
interfaces for common devices and generic tools for
configuration, deployment, archiving and alarms.

The installation and commissioning of ALBA required
alarm handling to supervise accelerators conditioning and
detect changes in operation conditions. Although two
alarm logging systems already existed in Tango, at ALBA
we decided to have an alarm system integrated in the
existing applications instead of having a separated tool.
To do so we combined previous ideas and developments
to provide a more flexible alarm handler.

ALARM SYSTEMS IN TANGO

The Tango Alarm System
The Tango Alarm System [4] was developed at Elettra

institute (Italy) by Graziano Scalamera and Lorenzo
Pivetta. It uses a MySQL alarm database containing sets
of rules that are permanently checked by a central
daemon, the Tango Alarm Server, which logs alarm
changes and triggers actions if needed. The rules are
combinations of boolean operators and Tango Attribute
values.

Table 1: Tango Alarms Syntax
sr/psch/s1.1/highthr

(({sr/psch/s1.1/stat} & 0x80) &&
({sr/psch/s1.1/curr} > 15.0))

The Alarm daemon is connected with the control
system using CORBA Notification events [4] triggered by
the targeted Attribute device; avoiding overhead in the
system. The Alarm Server provides logging and is
capable to launch commands of other Tango Devices, in
which notifications and actions are delegated. All alarms
in the system are stored and can be visualized using the
graphical log-viewer tool.

Figure 1: Tango Alarms Logs Viewer.

Soleil Alarm Database
The Alarm Database in operation at Soleil mimics the

behaviour of Tango Archiving System [5][6], but it's
focused on storing Attribute qualities (Valid, Invalid,
Changing, Warning or Alarm) instead of values. The
system uses a MySQL database and a pool of Archiver
devices that poll periodically the quality of those Tango
Attributes previously registered.

The conditions that trigger a change in Attribute
Quality are not stored in the Alarm Database but in the
Tango Database, using the Alarm/Warning Max/Min
Values of each attribute. Configuration and visualization
can be done using standard Tango Java tools and
Archiving viewer.

ALBA PyAlarm
The PyAlarm device server development started on

2007 during ALBA's construction phase. It was focused
on having an small stand-alone alarm system for
installation activities (equipment tests, prototype labs,
bakeouts, …) in places were database servers or network
infrastructure was not fully available or could be
interrupted.

Every PyAlarm Tango Device stores its rule sets as
device properties, that can be stored in the Tango
Database or Tango property files. These files allow the
server to be running without Tango database if needed.
Access between PyAlarm instances, clients and database
have been encapsulated in the Panic API.

Alarm logging is done using Soleil Snapshoting
database from the Tango Archiving System[5]. For every

*On leave

Proceedings of ICALEPCS2011, Grenoble, France MOMMU001

Operational tools and operators’ view 63 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Alarm triggered an Snapshot is recorded containing the
Alarm Status and the value of every Attribute involved in
the Alarm.

Figure 2: Pani c API enca psulates database access and
provides alarm setup, validation and visualization.

A Python Alarm System
The PyAlarm rules are inspired in Elettra's rule-sets,

with the aim of integrating both systems in the future. But
PyAlarm applies python parsing; enabling a richer rule
syntax with list comprehensions, regular expressions,
string replacement and other functional features.

PyAlarm also creates dynamically [7] new boolean
attributes for each new rule set, used to display alarm
states from any generic Tango client. The attribute names
syntax has been extended to combine conditions on value,
quality and time-stamp of attributes.

PyAlarm uses polling when running on top of PyTango,
but if Taurus[8] library is available the PyAlarm can use
it to switch transparently between polling or events for
each attribute.
Table 2: PyAlarm declarations showing syntax for value,
host, state, quality and regular expressions.
BL_PRESSURE:

BL/VC/VGCT-01/P1 > 3e-5

BL_LOST:

tbl01:10000/BL/CT/DB/State==UNKNOWN

BL_TEMPERATURE:

BL/EPS/PLC/T1.quality == ATTR_ALARM

ID_TEMPERATURE:

any(t>85 for t in FIND(ID/*/*/Temp*))

THE ALBA ALARM SYSTEM
 Although every PyAlarm is an independent process

that runs stand-alone, all the Alarm system is coordinated
using the Panic python API. This software layer
encapsulates the access between servers, clients and the
Tango database. The API provides a way to access
alarms configuration and modify existing alarm
distribution; not allowing to have duplicated alarms in the
system.

Once configured, alarm logging and notifications are
managed independently by each PyAlarm device. Each
PyAlarm device instance manages a collection of alarms

distributed by domain/family. Archiving and
configuration are centralized in our Tango and Archiving
Databases.

Accelerators Alarms Architecture
In Alba Accelerators the PyAlarm instances are

dedicated by subsystem (e.g. being Magnets and Vacuum
alarm systems are independent processes) and this
instances can be decentralized deploying every PyAlarm
in the same industrial PC were the monitored system is
running.

Alarms can be declared hierarchically to summarize a
big amount of alarms in fewer notifications. Alarms can
be used as variables within other alarms formulas, that
will summarize the state of their primitives when
generating reports.

Beam-lines Alarms Architecture
An independent alarm system is running on each of the

beam-lines. As the number of devices and subsystems is
much smaller it is not needed to distribute the alarm
system and it is centralized in a few PyAlarm servers
running in the same virtual server were the Tango
Database is running.

Figure 3: Messages sent during alarm life cycle.

The Alarm life-cycle
Alarms become active when the alarm condition

evaluates to a True value, and will require human
acknowledge to became inactive again. We added
Reminder/Recovered notifications to avoid active and
unacknowledged alarms remain unnoticed. Changes in
alarm condition value will still trigger email and logging
even if the alarm was still active, to make sure that no
incidences remain hidden.

Table 3: Types of Messages

Alarm The alarm condition has been activated.

Recovered Alarm conditions are now inactive, but
alarm state is kept.

Reminder Condition was active for X period or
became active after a Recovered period.

Acknowledge Alarm has been acknowledged by
operator.

Auto-reset Alarm reset after being in Recovered
state for a long time (optional).

MOMMU001 Proceedings of ICALEPCS2011, Grenoble, France

64C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Operational tools and operators’ view

Alarm Receivers
PyAlarm started as a notification service, so its main

feature is email sending to notify any control incidence. It
was initially extended to SMS and soon it was clear that
more functionality should be needed. Every new
notification feature has been added as a receiver type. In
this sense an email address or a tango command are just
different kind of receivers, that must be notified in case
of incidence.

Every alarm has its own list of receivers, which may
contain individual items or tags for groups of receivers.
These groups are defined using email addresses, SMS
numbers, lists of commands, archiving configurations or
groups of them.

Table 4: Types of Receivers

email Sent for every change in alarm status.

SMS Sent only for activation.

Html files To be loaded in the website.

SNAP Record attribute values in the
snapshoting database.

log Generates a raw log file

COMM Executes a TangoCommand.

USER INTERFACE
An easier method of global configuration/visualization

of alarms helps accelerators and beamlines operators to
diagnose incidences during commissioning; as well as
modifying alarm conditions if needed.

Figure 4: The Alarm editor widget.

An accelerator's alarm system requires an application
for configuration, visualization and filtering of alarms
usable at operator level; with no need of control system
internals background.

The Alarm application allows to filter alarms by
subsystem. To integrate alarms in existing applications
has been developed an Alarm Toolbar with access to
visualization and acknowledgement of alarms. This
toolbar is able to filter alarms and status depending on
user/application scope.

Alarms can be filtered by subsystem, receivers,
attributes targeted and severity. Error, Warning, Info and
Debug are the four severities available; which are used to
sort the information when summarized in lists or toolbar.
To go into detail as much as possible the alarm list
provides viewer of attribute values.

Figure 5: Alarm toolbar and list with filters and editor.

CONCLUSSIONS
We presented the ALBA Alarm System, created for

ALBA installation and successfully extended to cover our
accelerators and beam-lines. The PyAlarm was used
successfully during installation and commissioning of
ALBA linac, booster and beam-lines and in certain
projects in the ESRF. The early deployment of an alarm
system helped to prevent problems and detect irregular
behaviours.

But for using it in our storage ring we had to improve
the management of hundreds of alarms, adapting the
content of messages and adding hierarchies between
alarms that reduced the number of notifications sent. Our
next objectives are the execution or recommendation of
simple actions, linking alarms and low-level
troubleshooting.

Unifying Tango alarm systems in a unique solution is
still the aim of our development, so we focus next steps
on interaction with existing systems; using PyAlarm as
notification tool or adapting it to use Elettra Alarms
Database as it exists now.

REFERENCES
[1] ALBA Paper D. Einfeld, “Progress of ALBA”, Proceedings

of EPAC-2008, Genoa, Italy
[2] D.Fernández et al. “Alba, a Tango based Control System in

Python”, ICALEPCS'09, Kobe, Japan.
[3] A.Götz, E.Taurel, J.L.Pons, P.Verdier, J.M.Chaize, J.Meyer,

F.Poncet, G.Heunen, E.Götz, A.Buteau, N.Leclercq,
M.Ounsy, “TANGO a CORBA based Control
System”, ICALEPCS'03, Gyeongju, Korea

[4] Lorenzo Pivetta, “Development of the Tango Alarm
System”, ICALEPCS 2005, Geneva, Switzerland

[5] E.Taurel, “Testing the Tango Archiving
System”, Tango Meeting, 2004, ESRF, Grenoble, France

[6] S.Rubio et al, “Validation of a MySQL based archiving
system for Alba Synchrotron”, ICALEPCS'09, Kobe, Japan

[7] S.Rubio et al., “Dynamic Attributes and other functional
flexibilities of PyTango”, ICALEPCS 2009, Kobe, Japan

Proceedings of ICALEPCS2011, Grenoble, France MOMMU001

Operational tools and operators’ view 65 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

