
HOW TO MAINTAIN HUNDREDS OF COMPUTERS OFFERING 
DIFFERENT FUNCTIONALITIES WITH ONLY TWO SYSTEM 

ADMINISTRATORS 

R. Krempaska, A. Bertrand, C. Higgs, R. Kapeller, H. Lutz, M. Provenzano 
Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.

Abstract 
At the Paul Scherrer Institute, the control systems of 

our large research facilities are maintained by the 
Controls section. These facilities include the two proton 
accelerators, (HIPA and PROSCAN), the two electron 
accelerators, (SLS and the Injector Test Facility of the 
future SwissFEL) as well as the control systems of all 
their related beamlines and test facilities. 

This paper describes methods and tools which are used 
to develop and maintain the challenging computing 
infrastructure deployed by the Controls section. 

CONTROLS COMPUTING 
INFRASTRUCTURE 

The Control system is basically composed of Input 
Output Controllers (IOCs) running VxWorks operating 
system on VME hardware using the EPICS (Experimental 
Physics and Industrial Control System) software. 
Additionally, there is an increasing number of non VME 
based IOCs, (so called EPICS soft-IOCs) running mainly 
on Linux hosts. In total the we are responsible for the 
installation, configuration and maintenance of up to 400 
VME-based IOCs and more than 200 soft-IOCs. There is 
a remote console interaction with these systems in order 
to support their development, booting and debugging. 
Additionally, the control system includes special EPICS 
servers such as the CCD camera systems that often need 
dedicated configurations. 

Finally, the client part of control system applications 
requires operator and expert consoles, login clusters and 
status displays. The Control system configuration and 
applications software for each facility is stored on 
independent NFS file servers. The total number of Linux 
computers and servers is about five hundred. Since only 
two system administrators are responsible for their 
installation, configuration and maintenance, we have 
adopted a well defined solution to face this challenging 
task: 

 
 Virtualization 
 Unified operating system installation and update 

mechanism 
 Automatic configuration by a common tool 

(puppet) 

VIRTUALIZATION 
Virtualization allows the system administrators to 

configure a multitude of “one-task” simple machines such 
that administrative tasks can run on their own virtual 

computer. These virtual computers do not require a lot of 
CPU or memory. This is particularly useful for software 
upgrades and maintanence. Such systems include boot 
servers, soft-IOC servers, port server hosts and 
configuration servers (also called auto-save and restore 
servers). Computers providing access to private machine 
networks, such as secure shell (ssh) gateways and 
Channel Access gateways, are also installed as virtual 
machines. 

Virtualization also enables a rationalization of 
hardware, operating and energy costs. Our virtual 
computers run on a VMware cluster (two servers, each 
with 72Gbytes RAM and SAN storage). Of the 500 Linux 
computers, about 200 are virtual machines running on the 
VMware cluster. The remaining systems, (NFS file 
servers, archiver or development servers) are installed on 
dedicated hardware blades. 

UNIFIED OPERATING SYSTEM 
INSTALLATION 

At PSI the popular Scientific Linux (SL) distribution is 
used [1]. The PSI Central Computing Division is in 
charge of distributing and maintaining the SL core and 
rpm packages [2]. SL is supported by various labs and 
universities around the world and is based on Red Hat 
Enterprise, which is recompiled from source and 
repackaged. 

Using the so called “kickstart” mechanism of Red Hat 
Enterprise, we deploy the base operating system 
installation which is “tailored” by a software distribution 
mechanism, called puppet (see next section). The goal is 
to use the same system management framework for all 
hosts through their life cycle. 

Configuration changes and software updates, (e.g. 
kernel upgrades) are steered from a central location. 
Operator consoles in the control room are installed on 
desktop computers with a standard installation in order to 
guarantee redundancy and a fast and easy exchange in the 
case of failure or upgrade. 
Thus we are able to achieve an easy and uniform 
installation on all our systems. 

AUTOMATIC CONFIGURATION BY 
PUPPET 

Puppet is an automated administrative software engine 
for system configuration. It performs administrative tasks, 
such as adding users, installing packages, and updating 
server configurations, based on a centralized specification 
[3]. 

MOMAU007 Proceedings of ICALEPCS2011, Grenoble, France

56C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Project management



The Controls system administrators receive daily 
requests from users for new consoles, servers or office 
computers. Our existing 500 computers also need to be 
maintained. Without automated scripts, this would be 
almost impossible. The SL kickstart and subsequent 
puppet configuration is central to our automated 
installation process. 

Each facility needs several types of computers, which 
we call classes. There are about 35 computer classes 
defined in puppet. The reason is that different classes of 
computer need different NFS mounts, environmental 
variables setup, services and cron tasks or additional local 
user administration and user accounts. A set of puppet 
configuration files stored in the central PSI repository 
handle these particular installations issues. Each computer 
configured by puppet is assigned a class and each class 
has a hierarchy of configuration files. An example of a 
configuration file for an IOC boot server configuration 
can be seen on Fig.1. 

 

 

Figure 1: An example of a puppet configuration file for a 
boot server virtual computer. The list of include 
commands in the first part shows the required 
configuration for this particular computer type. The case 
statement similar to the C code syntax in the second part 
shows how special treatment for each facility is done. 

 
The configuration files are used when the puppet 

update process is scheduled from a cron-job (or manual 
request). Fig.2 illustrates a schematic flowchart diagram 
of the puppet deployment which can be factorized into the 
following steps: 

1. The puppet client sends a request for an update. 
The “client identity”, i.e. the computer name, or 
class is supplied. 

2. The puppet server collects configuration 
information from the hierarchy of configuration 
files. 

3. The puppet server sends packages and executes the 
update scripts defined in the configuration files. 

4. The client gets the yum updates from the yum 
repository server. 

5. The configuration results are stored in the Oracle 
database. 

 

 

Figure 2: The puppet process configuration of the controls 
computers. 

CONFIGURATION COMPUTERS 
OVERVIEW 

The puppet configuration process is scheduled every 24 
hours, typically during the night. Once the puppet 
configuration process is finished, the results are collected 
in the Oracle database. At the end of the process a 
database Web tool called Inventory software [4] 
integrates complete information about the configured 
hosts. This is a significant help for the system 
administrators. Fig.3 shows a database output list of all 
computers configured by puppet with supplementary 
information such as last update time, IP-address and 
Linux version. Finally Fig.4 displays even more detailed 
information for a host selected from Fig. 3. 
 

Proceedings of ICALEPCS2011, Grenoble, France MOMAU007

Project management 57 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



 

Figure 3: List of controls computers configured by 
puppet. 

 

 

Figure 4: Detailed puppet configuration information for 
HIPA-SOFTIOC02 selected from Fig.3, visible on the 
PSI intranet Web. 

ACKNOWLEDGMENTS 
We want to acknowledge our colleagues M. Gasser, V. 

Markushin and H. Billich from the PSI AIT group, for 
their collaboration and for supporting the controls system 
administration. 

REFERENCES 
[1] http://www.scientificlinux.org/ 
[2] http://www.hpc-ch.org/wp/wp-

content/uploads/2010/06/KS_Puppet_VM_20100520
_printout.pdf 

[3] http://projects.puppetlabs.com/ 
[4] http://gfa-it.web.psi.ch/invent_help/ 

 

MOMAU007 Proceedings of ICALEPCS2011, Grenoble, France

58C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Project management


