
IMPROVING DATA RETRIEVAL RATES
USING REMOTE DATA SERVERS*

Ted D'Ottavio, Bartosz Frak, Seth Nemesure and John Morris, Brookhaven National Laboratory,
Upton, NY, U.S.A.

Abstract
The power and scope of modern Control Systems has

led to an increased amount of data being collected and
stored, including data collected at high (kHz) frequencies.
One consequence is that users now routinely make data
requests that can cause gigabytes of data to be read and
displayed. Given that a users’ patience can be measured
in seconds, this can be quite a technical challenge. This
paper explores one possible solution to this problem - the
creation of remote data servers whose performance is
optimized to handle context-sensitive data requests.
Methods for increasing data delivery performance include
the use of high speed network connections between the
stored data and the data servers, smart caching of
frequently used data, and the culling of data delivered as
determined by the context of the data request. This paper
describes decisions made when constructing these servers
and compares data retrieval performance by clients that
use or do not use an intermediate data server.

INTRODUCTION
Can a system be constructed that can read and display

tens or hundreds of millions of stored data points to a user
in a reasonable period of time (< 10 seconds)? What are
the limitations and how can they be addressed? These are
the questions that led to the research being reported on
here.

The Controls logging system within the Collider-
Accelerator Department at Brookhaven National
Laboratory collects and stores measurement and setting
data for offline analysis. The logging system, in place for
about 10 years, uses a combination of user-generated and
system-generated requests. These requests are passed to
dedicated logger processes, which store the data to disk
along with database records indicating how to map the
requests to the stored data files. Data is retrieved and
displayed by specialized software that allows a user to see
what data was logged and to select data to be displayed.

The BNL logging system has become increasingly
popular over the years, with the amount of data collected
growing by a factor of 10 in the last 5 years, and expected
to grow by another factor of 10 over the next 3 years (12
TB of time-series data was stored last year). Much of this
increase is coming from requests to store data collected at
high frequencies (720Hz to 10 kHz). In rough terms,
about 500 MB of data is stored per day for every 1 kHz
parameter requested. Retrieving and displaying a days
worth of data for just a couple of these parameters means
processing about a GB of data contained within files
many times that size. For thick client applications that get

data directly from the file system, this means transferring
all of the data over the network to the client applications,
picking out the requested data, and displaying it to the
user before his or her patience has been exhausted. This
puts a severe strain on both the network (to read the data)
and the plotting software (to display it).

The solution reported in this paper uses a data server - a
combination hardware/software solution. Its job is to
handle user requests for logged data in the most efficient
way possible. Its efficiency is a result of two key ideas:
 Read the data quickly – improve network speed to

stored data, parallelize reads, and cache data.
 Cull the returned data - send the user only the data

that can reasonably be distinguished on the display.
The use of an intermediate data server here follows

similar efforts in place within the EPICS community [1]
and at the CERN/LHC [2].

SYSTEM DESCRIPTION
The term data server denotes a collection of enterprise

grade middleware applications deployed in a virtual
cluster of dedicated and adopted process servers. At the
core of the system is a single purpose application, whose
role is to handle client requests for stored data. These
requests are divided into discrete tasks, which are
processed in parallel either locally or, in the event the
core server cannot complete assigned workload, on one or
more satellite servers. Result fragments from all tasks
belonging to the same request, are reassembled by the
core server and delivered back to the client.

Software Architecture Overview
Java Enterprise Edition 6 (Java EE6) was chosen as a

base platform for the entire system. Benefits include a
wide array of available web technologies [3] and a
scalable business logic platform as well as built-in
management features. Glassfish 3.1, which provides a
complete open source Java EE6 reference implementation
[4], was selected over other EE6 compliant applications
servers.

The enterprise applications used to construct the data
server are divided into three logical modules (Figure 1):
 Web component, which exposes a RESTful web

service API to the remote clients.
 Request dispatch and assembly (RDA) Enterprise

Java Beans (EJB) business module responsible for
database communication, task scheduling and
construction of the response objects.

 Request extract and transform (RET) EJB business
module responsible for the data collection, caching
and transformation. This component is divided

__

*Work supported by Brookhaven Science Associates, LLC under contract no. DE-AC02-
98CH10886 with the U.S. Department of Energy

MOMAU002 Proceedings of ICALEPCS2011, Grenoble, France

40C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management

furthermore into local and remote sub-modules - the
latter deployed on the satellite servers.

Figure 1: High-level logical system structure.

Request Lifecycle
Every request starts with a RESTful GET call to a

designated web service method. The URL used to identify
the requested resources has one mandatory path element
as well as three mandatory and one optional parameter
values – clients consuming this web service are required
to specify a name of the request file, start and end times
as well as at least one data item name contained in the
requested file. The web module submits the request to the
RDA component, which queries one or more databases
for a list of file paths that fall between the specified start
and end time values and match exactly the request file
name. At this stage the RDA module attempts to locate
each file / resource pairs in either the local or one of the
remote caches. Cached file elements are immediately
queued on the owning instance for final processing (i.e.
culling). The remainder of the file list is sent to a
scheduler on a local instance, which attempts to distribute
the combined read and process tasks between the
clustered RET modules by taking into consideration both
performance as well as coherence aspects of the request.
The factors, which influence scheduler’s decision include:
 The queue length on each cluster instance – the

shorter the wait time, the greater the chance that the
scheduler will pick that instance.

 Instance spatial location – some cluster member may
be physically closer to the stored data than others
(i.e. application could be deployed directly on one of
the archive server host), which allows them to read
stored data at a much higher rate than their
networked counterparts.

 Request length – shorter requests, which estimated
processing time of under 5 seconds benefit from
being scheduled on only one instance.

Regardless of which instance or instances were
involved in reading and/or processing the scheduler’s
request, all intermediate results always make it back to
the local instance for final assembly. During this phase of
the request lifecycle the results from each processing task

are checked for errors. Additionally, if they were
processed out of order, they have to be rearranged
according to the time index given to them by the
scheduler. At this stage the RDA module returns the time
sorted, processed results back to the Web component,
which can package the processed data in a JAXB
compliant wrapper and ship it back to the client.

Spotlight on Culling
Every request that passes through the data server is

subjected to the culling algorithm. This algorithm was
designed to cut down high volume, time domain datasets
to more manageable, lower-density sets. The goal is to
return a dataset to the user that is virtually
indistinguishable on a scatter plot to the full, un-culled
dataset. We have found for typical monitors and
resolutions that this occurs when a dataset of about 20k
points is returned. The advantage here is that the culled
dataset can be transported to the client much more quickly
than the full dataset. The disadvantage is that any change
in the plot axis limits (for example, a zoom) forces a new
data retrieval. Our experience has been that these zoom
slowdowns are minimal (< 1 sec) as long as the original
data is cached on the data server. The culling algorithm
incorporated into the data server uses a parallel
processing pipeline, allowing the server to process up to a
billion points per second. An enhancement to this
algorithm will incorporate user-selected data filters that
can be used to further refine the returned datasets.

Hardware
The central EJB container runs in a 64bit environment

(Red Hat EL6) on a dedicated rack mounted system. Two
6 core Xeon CPUs, each running at 3.47Ghz, and a total
of 144GB of RAM is available to one or more virtual
machines - this number depends on garbage collection
issues we might encounter once the system is put into
production. The SSD caching subsystem is made up of
four Intel 250GB solid state drives configured in RAID0
on a 6Gb/s LSI controller. The SSD array is expandable
to 3.5TB, and like RAM can be split into multiple
partitions. Four 1Gb/s bonded adapters handle the
network access to data stores, though only one was used
for the results that follow. Satellite servers run in smaller
virtual machines on equally powerful CPUs. They have
their own in-memory cache, but they lack the disk-store
caching, which is available on the core machine. Figure 2
shows the data server's communication diagram.

Proceedings of ICALEPCS2011, Grenoble, France MOMAU002

Data and information management 41 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

3

2

1

1
2

3

Figure 2: Data server communication diagram.

RESULTS
Data server’s parallel processing core is only as fast as

the backend, which supplies it the raw data. This is a non-
issue for the cached values, however reading from a
network store over a 1Gb/s connection can cause a
significant bottleneck in the processing pipeline. Before
any further development could be done, we had to prove
to ourselves that the parallel design could indeed achieve
the desired throughput rates. We also wanted to see how
the rates scale for both compressed and uncompressed
datasets. Figure 3 shows the effective data rates for both
types of datasets with varying simultaneous thread count.

Figure 3: Effective Throughput Read Rates.

The uncompressed data reads over a network are
essentially constant around 120MB/s and are unaffected
by the additional threads. The same cannot be said for the
compressed read scenario. The effective throughput on a
12-core Xeon server increases from 75MB/s to 365MB/s
in a fairly linear fashion when moving from 1 to 12

threads. Results for the concurrent compressed scenario
were encouraging enough to proceed with the project.

Performance Tests
Our most basic goal for this project was to improve the

performance of displaying very large datasets. Our
existing software for displaying logged data reads the data
directly from disk files and displays the results. Data
culling, as described above, is used when necessary to
improve display performance. For comparison purposes,
this software was modified to allow the option to retrieve
data from the data server.

A variety of logged data was tested including very high
frequency (10 kHz) and low frequency (1 Hz) data. To
eliminate disk-caching issues, a 4 GB dataset was used to
flush the cache in between each reading. In addition to
having the data server read data from disk files, we also
explored the option of reading data from a SSD data
cache and from a RAM data cache. The results of these
tests are shown in Table 1, which compares the speed at
which the displayed data is transported through the
various configurations.

Table 1: Data Throughput in Test Configurations

Throughput Speedup

Client to Remote Disk-store 5.4 MB/s -

Client through data server to
Remote Disk-store

146 MB/s 27x

Client through data server to
SSD cache 245 MB/s 45x

Client through data server to
RAM

968 MB/s 180x

The large speed advantage of using the data server (in
the worst case, a factor of 27x improvement) is the result
of the following:
 Network - the data server has a 1 Gb/s connection to

the data file vs. a 100 Mb/s connection for the client.
 Parallel Execution - the data server has up to 12

threads that can individually read and cull data files.
The client is single-threaded.

 Hardware - the data server has very fast CPUs with
lots of RAM in a 64-bit environment. Clients are
typically run on much more modest hardware.

The CPU speed turned out to be more important than
we originally realized. This is because the data files are
gzip-compressed files and need to be uncompressed
before the proper data can be extracted. Fast CPUs
significantly increase the speed of data decompression.

The results, while reproducible for a specific set of
data, were quite variable across different data requests. In
fact, the standard deviation across all of the speed tests
within each category was about 50%. We have identified
several factors that contribute to this variability:
 Data Density - Data for many items are stored

together in files, primarily based on how users have
setup logging requests. Extracting one or many from

MOMAU002 Proceedings of ICALEPCS2011, Grenoble, France

42C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management

the same set of files can significantly affect read
performance.

 Timestamp Density - For slow data, we store one
timestamp per data point. For most fast data we
store data as arrays with a single timestamp and an
indication of the time between points.

 Data Compression - Some data compresses much
better than others. We've seen data compression
rates range from 3 to 30 with 5 being a typical value.
More highly compressed data can be read faster from
disk because it is smaller.

SUMMARY
At this point it appears that our initial goal of

decreasing the time it takes to display large datasets by a
factor of 10 will easily be met by introducing a data
server between client and data. Much of the speed gain
has come from a fast network connection between the
data server and the data, fast CPUs on the data server that
can be run in parallel to process the data, and a culling
algorithm that makes it possible to quickly transport data
to the client.

There are several items that we have yet had time to
explore. First, we would like to increase the network
speed between the data server and our data files.
Currently, they are connected via a 1 Gb/s network. We
are exploring both 4 Gb/s and 10 Gb/s connections.
Second, we would like to make a variety of data filters
available to our users so that they can more quickly

identify their data of interest. Filter types include "only
data when the RHIC collider is on its energy ramp", "only
data when there is beam in RHIC", and "only data when a
measurement is above/below a threshold value". These
filter selections will be passed down to the data server and
reduce the amount of data that the server needs to process
and the associated data that the user will view. Finally,
we have plans on making better use of the solid-state
drive connected to our data server. Past experiments have
shown that users spend about 80% of their time looking at
logged data collected within the last week and 90%
looking at data collected within the last month. Our plan
is to store recent logged data on our 1 TB SSD so that
these frequent requests can be delivered more quickly.

REFERENCES
[1] K. Furukawa, M. Satoh, I. Mejuev, K. Nakao, "A Java-

Based EPICS Archive Viewer With Soap Interface For
Data Retrieval”,
http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/M
P707.PDF, ICALEPCS (2003).

[2] Roderick, C., UK Oracle Users Group Conference,
http://lhc-logging.web.cern.ch/lhc-
logging/docs/Presentations/LHC_Logging_Service_UKOU
G_2006.ppt (2006)

[3] Oracle Corporation, “Glassfish Metro Users Guide”,
http://metro.java.net/guide/

[4] Oracle Corporation, “JSR-000316 Java Platform,
Enterprise Edition 6 Specification 6.0 Public Review
Draft”, http://download.oracle.com/otndocs/jcp/javaee-6.0-
pr-oth-JSpec/

Proceedings of ICALEPCS2011, Grenoble, France MOMAU002

Data and information management 43 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

