
THIRTY METER TELESCOPE OBSERVATORY
SOFTWARE ARCHITECTURE

K. Gillies#, C. Boyer, TMT Observatory Corporation, Pasadena, CA 91105, USA

Abstract
The Thirty Meter Telescope (TMT) will be a ground-

based, 30-m optical-IR telescope with a highly
segmented primary mirror located on the summit of
Mauna Kea in Hawaii. The TMT Observatory Software
(OSW) system will deliver the software applications and
infrastructure necessary to integrate all TMT software into
a single system and implement a minimal end-to-end
science operations system. At the telescope, OSW is
focused on the task of integrating and efficiently
controlling and coordinating the telescope, adaptive
optics, science instruments, and their subsystems during
observation execution. From the software architecture
viewpoint, the software system is viewed as a set of
software components distributed across many machines
that are integrated using a shared software base and a set
of services that provide communications and other needed
functionality. This paper describes the current state of the
TMT Observatory Software focusing on its unique
requirements, architecture, and the use of middleware
technologies and solutions that enable the OSW design.

TMT INTRODUCTION
The Thirty Meter Telescope (TMT) is an advanced,

wide field (20 arcmin), altitude-azimuth telescope with a
primary mirror consisting of 492, 1.44 meter segments. At
first light, a facility multi-conjugate adaptive optics
(MCAO) system will be available using a laser guide star
(LGS) system. The facility’s twin Nasmyth platforms will
concurrently support multiple instruments, which are all
available during the night for observations. Two science
instruments will be delivered for use with the MCAO-
LGS system: IRIS, a near-infrared instrument with
parallel imaging and integral-field-spectroscopy support;
and IRMS, an imaging, multi-slit near-infrared
instrument. A seeing-limited, wide-field, multi-object
optical imaging spectrograph (MOBIE) will also be
available at first light. The operations model includes PI-
directed observing from remote facilities and on-site
service observing by staff. The telescope and facilities are
currently in the advanced design phase. The telescope is
planned for the summit of Mauna Kea on the island of
Hawai’i in the United States.

TMT SOFTWARE ARCHITECTURE
Significant aspects of software systems for large

observatories have converged around a few common ideas
and solutions due to similarities in the facilities, their
requirements for operation and use, and the issues related
to development and maintenance [1]. The TMT software

architecture takes advantage of these prior solutions when
possible. It’s then possible to focus attention on the
problems unique to TMT and reuse common solutions for
the parts of the software system that are known or of little
risk. We can also improve upon the solutions used in the
previous generation of systems when experience has
shown that aspects of the known solutions have issues.

The complexity of some aspects of the TMT software
control system scale with the telescope aperture size, and
the software must also scale to handle this complexity.
Segmented mirror control for TMT requires more moving
parts behind the mirror and with it more sophisticated
control software than existing segmented mirror systems.

It’s also true that not every aspect of TMT software
complexity scales with the size of the aperture. Many
things that work for 8m class telescopes work just as well
with TMT. An example is proposal submission and
planning software.

A complete description of the architecture for a system
the size of the TMT software system requires more than a
few pages. Table 1 shows some of the broad range of
challenges related to the software that executes at the
telescope site. This paper will show one way the
architecture addresses the challenges of Table 1.

Table 1: Architecture Challenges

Challenge Description

Acquisition There are demanding requirements on
the system performance and coordination
for target acquisition and observation
setup.

Composition
challenges

Some components must be used in a
variety of situations or composed in
different ways to support different
applications. For instance, the MOBIE
wavefront sensors must act as part of
MOBIE but also work as part of the
phasing system.

Wavefront
measurement

Wavefront measurement functionality
and hardware is potentially spread
throughout telescope systems and
instruments making it a challenge to
cleanly decompose the system and
software. This was a problem with 8m
class telescopes as well.

Distributed
development

Multiple, distributed, international
partners provides a new level of software
construction and management
complexity.

Operations
maintenance

The long lifetime of TMT requires an
architecture that can be enhanced and
modified without impacting the
operations system.

 __
#kgillies@tmt.org

FRBHMUST03 Proceedings of ICALEPCS2011, Grenoble, France

1326C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing

Architecture Overview
TMT has adopted the idea of a technical architecture

and functional architecture from other recent large
telescope projects (e.g. ALMA [2], ATST[4]). The
technical architecture is the software infrastructure that
provides the foundation for the functional architecture.
System features, such as logging and command support,
are part of the technical architecture. The functional
architecture consists of the decisions and software
components that enable the activities of the observatory
from the point of view of the users. For instance, how
does the system collect header information for a science
data frame?

A software system should be viewed in many ways. At
the highest level in the functional architecture, TMT
software is modeled as the 5 large principal systems
shown in Figure 1. Each principal system is focused on
specific, easily-identifiable functionality, and each is itself
a collection of other software components or systems.
Viewing the system at this level allows one to think more
easily about flow of control and where software
functionality exists within the system.

Figure 1: One view of the TMT software architecture
splits the system into five large principal systems.

This view shows communication is hierarchical and
flows down from Observatory Controls to the other
principal systems. This command communication is low-
bandwidth by design; any high-speed communication
occurs within a single principal system.

Figure 2 drills down one more level to show sub-
systems that represent major hardware and software
components within the principal systems. At the top of the
figure are the observing user interfaces and the software
components within Observatory Controls that sequence
and synchronize the activities of the other systems to
generate the user’s desired science data.

The integration of these software components requires
software infrastructure that is outside the scope of the
individual components themselves. The horizontal bar
dividing Figure 2 in half represents this software
infrastructure. The idea of shared software infrastructure
based on a set of services and associated software focused
on integration is a successful strategy in large observatory
software architecture [1, 2, 4]. TMT calls this software
Common Software (CSW). CSW is the implementation of
the technical architecture.

Common Software is a collection of software and
services. A service is a set of related software
functionality together with behavior and the policies that
control its usage. TMT CSW uses external packages (i.e.,
software not developed by TMT–COTS or open source
middleware, etc.) to implement the CSW services.
Abstractions and wrappers are present between the CSW
services and the external packages to enable some
isolation from specific product choices. For a component
programmer integration of a component with TMT
requires the use of a service-oriented API and library code
that must be linked with the component.

Figure 2: The major systems of the Telescope Controls,
AO Controls and Instruments connected by the software
infrastructure provided by the technical architecture.

Table 2 is a list of services provided by CSW that are
needed to enable the functionality of the Functional
Architecture.

Table 2: List of Planned CSW Services

Service Task Description

User single sign on
Centrally manage user authentication
and access control

Commands
Support for subscribing to, receiving,
sending, and completing commands in
the form of configurations

Location/Connection
Locate and connect to components
within the distributed system

Events/Telemetry
Enable event-based functionality based
on publish, subscribe paradigm

Alarm/Health
Support monitoring and publishing
component alarm and health signals

Configuration
Manage initial values and system and
component configurations history

Logging
Capture and store system logging
information

Time Standards-based, precision time access

One important example is the event services. These
services allow one component to send a piece of
information (i.e., an event) to one or more other

Proceedings of ICALEPCS2011, Grenoble, France FRBHMUST03

Distributed computing 1327 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

components. The Event Service provides a high-
performance, publish-subscribe message system.
Components can signal actions (events), publish status
information (telemetry), or publish control information
(event streams). One big advantage of this type of service
is that the publishers and subscribers are decoupled; each
requires no knowledge of the existence of the other.

OBSERVING MODE ORIENTED
ARCHITECTURE

Operations experience has shown there are drawbacks
to limiting the modeling and construction of the software
structure to the principal system level, and this has driven
architecture changes for TMT. For instance, principal
systems are large systems that must handle all observing
modes and operations scenarios. This results in broad,
complex software interfaces that are difficult to verify and
modify during operations. It continues to be valuable to
view the system at the principal system level, but to
address this and the challenges of Table 1 a more flexible
approach is required. Flexibility is a key design concept
that can result in a software system that can respond to the
changing needs of science operations over the project
lifetime.

The functional structuring approach planned for TMT
that addresses these issues is called Observing Mode
Oriented Architecture (OMOA) [3]. An observing mode
is a well-defined instrument observing task and an
associated set of owned resources, procedures, and
capabilities that implement the mode. An example
observing mode for TMT is: IRIS multi-filter integral
field spectroscopy using the NFIRAOS adaptive optics
unit with AO laser guide star correction. An instrument
will generally have several associated observing modes
for acquisition, science objects, and calibrations.

A goal of this architecture is to eliminate software
waste and run as little software as is necessary to execute
an observation using a specific observing mode. To
accomplish this, the software within principal systems
must consist of smaller components that are then
assembled into a dynamic system configuration that is
specific to the observing mode.

To explain this approach, the software components you
might find in a principal system are shown as layers in
Figure 3 with specific responsibilities described in the
following sections.

Figure 3: OMOA software structure layers.

Hardware Control Layer
In 2011 the trend is towards motor controllers and other

hardware controllers and sensors that are network-resident
devices capable of controlling multiple channels or to
Programmable Application Controllers communicating
via high-level commands over a standard TCP/IP-based
network. It is generally no longer necessary to develop
single use, low-level device drivers; a software
investment that requires skilled programmers and
significant effort that generates long-term technical debt
and hinders change during operations.

The lowest layer in the OMOA software system, called
the Hardware Control Layer, consists of all the
controllable hardware that is available for use by higher
levels of software. A sea of similar software components
called Hardware Control Daemons (HCD) at layer 1
controls the TMT low-level hardware of the telescope,
adaptive optics, and instruments.

Each HCD is associated with one or more networked
motion controllers or other low-level hardware controllers
(shown as layer 0 in Figure 3). The HCDs act as adapters
and provide a uniform software interface and feature set
focused on device control to the layers above. The HCDs
are always executing, and each can be accessed at any
time by the software layers above.

This layer is one place where external systems can be
integrated. As an adapter, a HCD can isolate a proprietary
connection to an external system making it look like a
conforming system device. The HCD also provides a
suitable location for device simulation allowing device
end-to-end system testing without hardware presence.

Assembly Layer
The Assembly Layer exists just above the Hardware

Layer at layer 2 in Figure 3. Software at this layer consists
of components called Assemblies with two roles in the
OMOA. The first role is to allow the grouping of HCDs
into higher-level entities. This is required when individual
hardware devices must be considered as a unit or
requiring processing. The second role of components in
the Assembly Layer is to provide more sophisticated
hardware control functionality that integrates devices
across different HCDs to produce higher-level devices or
add uniformly useful capabilities.

Assemblies can be transient or long-lived. An example
of a long-lived Assembly is one that provides telescope
pointing, tracking, and offsetting. An Assembly can also
be created dynamically to provide combinations of HCDs
that need to be coupled for a specific observing mode
during an observation. An example might be the
coordination of wavefront sensor detector readout
processing and the control of the probes for the wavefront
sensors.

Sequencing Layer
The Sequencing Layer is layer 3 in Figure 3.

Components at this level are called sequencers because
they control and synchronize the actions of the HCDs and
Assemblies. The sequencer components are dynamically

FRBHMUST03 Proceedings of ICALEPCS2011, Grenoble, France

1328C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing

created and composed in order to execute a specific
observing mode. This approach is possibly the most
innovative part of this software architecture, because it is
this layer that gives the software its compositional
flexibility and other qualities. Individual sequencers can
provide higher-level control of a set of distributed
hardware. The ability to cut across the development
hardware boundaries and compose and control hardware
as needed is what allows this approach to eliminate many
of the challenges mentioned in Table 2.

The components in this layer share software interfaces
that allow them to be plugged together to form the
sequencing engine for a specific observing mode. There
can be one or many sequencing components in an
observing mode sequencer. The goal is that the
sequencing components for a mode be assembled into a
single process. This minimizes complexity and
performance issues related to distributed processes and
communication of commands across process and machine
boundaries. A large amount of software related to
command input/output in systems is eliminated, and fewer
tiers result in higher performance and simplicity.

Figure 4: A simple example showing the lowest 4 layers
of an OMOA observing mode configuration.

The sequencer for an observing mode is constructed
during observation execution with a Configuration
Factory that takes as input an observing mode and an
observation description from another software tool such
as a high-level planning GUI. The Configuration Factory
has been programmed with instructions on how to
construct the matching sequencing process for the
observing mode.

Figure 4 shows a simplified, partial example of an
instrument like TMT’s MOBIE in a seeing-limited
observing mode. At the lowest level are the HCDs for the
wavefront sensor probes, instrument hardware, and
detectors. An assembly exists to integrate and provide
higher level functions for the wavefront sensor hardware
and detector. All other sequencing for the observing mode
is in the Observing Mode Sequencer that is created
dynamically for the observation. The HCD components
could be separate processes running on distributed
hardware while the sequencing components exist in a
single process within the Observatory Controls.

This example demonstrates the flexibility inherent in
this approach. It allows the grouping of software and
hardware in an optimal arrangement for a specific
observing mode with only the functionality needed to
support a specific mode. During operations this allows
new observing modes to be rolled out more easily with
minimal influence on current functionality.

Monitoring/Control Layer
The Monitoring/Control Layer (layer 4 in Figure 3) is

the layer of software that contains the user interface
programs that are used to observe with the telescope. At
TMT there will be graphical user interfaces for use by
observers during the night. These applications use the
CSW services to control and monitor the system.

SUMMARY
The TMT software architecture is similar to the systems

constructed for 8m telescopes, but it has been enhanced to
take advantage of changes in software and hardware
technology as well as 10 years of experience with the
principal system architecture approach.

The TMT technical architecture is based on a set of
shared software services, each of which is itself based on
open-source or commercial software.

The functional architecture uses the structuring
approach of the Observing Mode Oriented Architecture.
The goal of OMOA during observation execution is to
allow, for any given observing mode, the minimal amount
of software needed to execute the mode. By taking this
approach, many of the problems outlined in Table 1 are
minimized or eliminated.

The innovation in OMOA is the implementation of the
principal systems as more focused fine-grained
components at the architectural level. This single change
provides the opportunity to reduce the amount of software
needed at the telescope, thereby reducing the complexity
of the runtime system. This, coupled with the use of
dynamic system configurations focused on executing
individual observing modes, addresses the need to
sequence systems with more flexibility and higher
performance than currently possible.

REFERENCES
[1] K. Gillies, J. Dunn, D. Silva, “Defining common

software for the Thirty Meter Telescope,"
Proceedings of SPIE Vol. 6274, 62740E (2006).

[2] J. Schwarz, G.Chiozzi, P. Grosbol, H. Sommer, D.
Muders, ALMA Software Architecture,
http://www.alma.nrao.edu/development/computing/d
ocs/joint/draft/ALMASoftwareArchitecture.pdf.

[3] K. Gillies, S. Walker, “An observation execution
system for next-generation large telescopes,”
Proceedings of SPIE Vol. 7740, 7740Q (2010).

[4] S. Wampler, B. Goodrich, “ATST Software Concepts
Definition,” Document SPEC-0013, Rev B,
http://atst.nso.edu/files/docs/SPEC-0013.pdf

Proceedings of ICALEPCS2011, Grenoble, France FRBHMUST03

Distributed computing 1329 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

