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Abstract 
The Thirty Meter Telescope (TMT) will be a ground-

based, 30-m optical-IR telescope with a highly 
segmented primary mirror located on the summit of 
Mauna Kea in Hawaii. The TMT Observatory Software 
(OSW) system will deliver the software applications and 
infrastructure necessary to integrate all TMT software into 
a single system and implement a minimal end-to-end 
science operations system. At the telescope, OSW is 
focused on the task of integrating and efficiently 
controlling and coordinating the telescope, adaptive 
optics, science instruments, and their subsystems during 
observation execution. From the software architecture 
viewpoint, the software system is viewed as a set of 
software components distributed across many machines 
that are integrated using a shared software base and a set 
of services that provide communications and other needed 
functionality. This paper describes the current state of the 
TMT Observatory Software focusing on its unique 
requirements, architecture, and the use of middleware 
technologies and solutions that enable the OSW design. 

TMT INTRODUCTION 
The Thirty Meter Telescope (TMT) is an advanced,  

wide field (20 arcmin), altitude-azimuth telescope with a 
primary mirror consisting of 492, 1.44 meter segments. At 
first light, a facility multi-conjugate adaptive optics 
(MCAO) system will be available using a laser guide star 
(LGS) system. The facility’s twin Nasmyth platforms will 
concurrently support multiple instruments, which are all 
available during the night for observations. Two science 
instruments will be delivered for use with the MCAO-
LGS system: IRIS, a near-infrared instrument with 
parallel imaging and integral-field-spectroscopy support; 
and IRMS, an imaging, multi-slit near-infrared 
instrument. A seeing-limited, wide-field, multi-object 
optical imaging spectrograph (MOBIE) will also be 
available at first light. The operations model includes PI- 
directed observing from remote facilities and on-site 
service observing by staff. The telescope and facilities are 
currently in the advanced design phase. The telescope is 
planned for the summit of Mauna Kea on the island of 
Hawai’i in the United States. 

TMT SOFTWARE ARCHITECTURE  
Significant aspects of software systems for large 

observatories have converged around a few common ideas 
and solutions due to similarities in the facilities, their 
requirements for operation and use, and the issues related 
to development and maintenance [1]. The TMT software 

architecture takes advantage of these prior solutions when 
possible. It’s then possible to focus attention on the 
problems unique to TMT and reuse common solutions for 
the parts of the software system that are known or of little 
risk. We can also improve upon the solutions used in the 
previous generation of systems when experience has 
shown that aspects of the known solutions have issues. 

The complexity of some aspects of the TMT software 
control system scale with the telescope aperture size, and 
the software must also scale to handle this complexity.  
Segmented mirror control for TMT requires more moving 
parts behind the mirror and with it more sophisticated 
control software than existing segmented mirror systems. 

It’s also true that not every aspect of TMT software 
complexity scales with the size of the aperture. Many 
things that work for 8m class telescopes work just as well 
with TMT. An example is proposal submission and 
planning software. 

A complete description of the architecture for a system 
the size of the TMT software system requires more than a 
few pages. Table 1 shows some of the broad range of 
challenges related to the software that executes at the 
telescope site. This paper will show one way the 
architecture addresses the challenges of Table 1. 

Table 1: Architecture Challenges 

Challenge Description 

Acquisition There are demanding requirements on 
the system performance and coordination 
for target acquisition and observation 
setup. 

Composition 
challenges 

Some components must be used in a 
variety of situations or composed in 
different ways to support different 
applications. For instance, the MOBIE 
wavefront sensors must act as part of 
MOBIE but also work as part of the 
phasing system. 

Wavefront 
measurement 

Wavefront measurement functionality 
and hardware is potentially spread 
throughout telescope systems and 
instruments making it a challenge to 
cleanly decompose the system and 
software. This was a problem with 8m 
class telescopes as well. 

Distributed 
development 

Multiple, distributed, international 
partners provides a new level of software 
construction and management 
complexity. 

Operations 
maintenance 

The long lifetime of TMT requires an 
architecture that can be enhanced and 
modified without impacting the 
operations system. 

 ____________________________________________  
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Architecture Overview 
TMT has adopted the idea of a technical architecture 

and functional architecture from other recent large 
telescope projects (e.g. ALMA [2], ATST[4]). The 
technical architecture is the software infrastructure that 
provides the foundation for the functional architecture. 
System features, such as logging and command support, 
are part of the technical architecture. The functional 
architecture consists of the decisions and software 
components that enable the activities of the observatory 
from the point of view of the users. For instance, how 
does the system collect header information for a science 
data frame? 

A software system should be viewed in many ways. At 
the highest level in the functional architecture, TMT 
software is modeled as the 5 large principal systems 
shown in Figure 1. Each principal system is focused on 
specific, easily-identifiable functionality, and each is itself 
a collection of other software components or systems. 
Viewing the system at this level allows one to think more 
easily about flow of control and where software 
functionality exists within the system. 

 

Figure 1: One view of the TMT software architecture 
splits the system into five large principal systems. 

This view shows communication is hierarchical and 
flows down from Observatory Controls to the other 
principal systems. This command communication is low-
bandwidth by design; any high-speed communication 
occurs within a single principal system.  

Figure 2 drills down one more level to show sub-
systems that represent major hardware and software 
components within the principal systems. At the top of the 
figure are the observing user interfaces and the software 
components within Observatory Controls that sequence 
and synchronize the activities of the other systems to 
generate the user’s desired science data. 

The integration of these software components requires 
software infrastructure that is outside the scope of the 
individual components themselves. The horizontal bar 
dividing Figure 2 in half represents this software 
infrastructure. The idea of shared software infrastructure 
based on a set of services and associated software focused 
on integration is a successful strategy in large observatory 
software architecture [1, 2, 4]. TMT calls this software 
Common Software (CSW). CSW is the implementation of 
the technical architecture.  

Common Software is a collection of software and 
services. A service is a set of related software 
functionality together with behavior and the policies that 
control its usage. TMT CSW uses external packages (i.e., 
software not developed by TMT–COTS or open source 
middleware, etc.) to implement the CSW services. 
Abstractions and wrappers are present between the CSW 
services and the external packages to enable some 
isolation from specific product choices. For a component 
programmer integration of a component with TMT 
requires the use of a service-oriented API and library code 
that must be linked with the component.  

Figure 2: The major systems of the Telescope Controls, 
AO Controls and Instruments connected by the software 
infrastructure provided by the technical architecture. 

Table 2 is a list of services provided by CSW that are 
needed to enable the functionality of the Functional 
Architecture. 

Table 2: List of Planned CSW Services 

Service Task Description 

User single sign on 
Centrally manage user authentication 
and access control 

Commands 
Support for subscribing to, receiving, 
sending, and completing commands in 
the form of configurations 

Location/Connection 
Locate and connect to components 
within the distributed system 

Events/Telemetry 
Enable event-based functionality based 
on publish, subscribe paradigm 

Alarm/Health 
Support monitoring and publishing 
component alarm and health signals 

Configuration 
Manage initial values and system and 
component configurations history 

Logging 
Capture and store system logging 
information 

Time Standards-based, precision time access

One important example is the event services. These 
services allow one component to send a piece of 
information (i.e., an event) to one or more other 
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components. The Event Service provides a high-
performance, publish-subscribe message system. 
Components can signal actions (events), publish status 
information (telemetry), or publish control information 
(event streams). One big advantage of this type of service 
is that the publishers and subscribers are decoupled; each 
requires no knowledge of the existence of the other. 

OBSERVING MODE ORIENTED 
ARCHITECTURE 

Operations experience has shown there are drawbacks 
to limiting the modeling and construction of the software 
structure to the principal system level, and this has driven 
architecture changes for TMT. For instance, principal 
systems are large systems that must handle all observing 
modes and operations scenarios. This results in broad, 
complex software interfaces that are difficult to verify and 
modify during operations. It continues to be valuable to 
view the system at the principal system level, but to 
address this and the challenges of Table 1 a more flexible 
approach is required. Flexibility is a key design concept 
that can result in a software system that can respond to the 
changing needs of science operations over the project 
lifetime.  

The functional structuring approach planned for TMT 
that addresses these issues is called Observing Mode 
Oriented Architecture (OMOA) [3]. An observing mode 
is a well-defined instrument observing task and an 
associated set of owned resources, procedures, and 
capabilities that implement the mode. An example 
observing mode for TMT is: IRIS multi-filter integral 
field spectroscopy using the NFIRAOS adaptive optics 
unit with AO laser guide star correction. An instrument 
will generally have several associated observing modes 
for acquisition, science objects, and calibrations. 

A goal of this architecture is to eliminate software 
waste and run as little software as is necessary to execute 
an observation using a specific observing mode. To 
accomplish this, the software within principal systems 
must consist of smaller components that are then 
assembled into a dynamic system configuration that is 
specific to the observing mode. 

To explain this approach, the software components you 
might find in a principal system are shown as layers in 
Figure 3 with specific responsibilities described in the 
following sections. 

 

Figure 3: OMOA software structure layers. 

Hardware Control Layer 
In 2011 the trend is towards motor controllers and other 

hardware controllers and sensors that are network-resident 
devices capable of controlling multiple channels or to 
Programmable Application Controllers communicating 
via high-level commands over a standard TCP/IP-based 
network. It is generally no longer necessary to develop 
single use, low-level device drivers; a software 
investment that requires skilled programmers and 
significant effort that generates long-term technical debt 
and hinders change during operations.  

The lowest layer in the OMOA software system, called 
the Hardware Control Layer, consists of all the 
controllable hardware that is available for use by higher 
levels of software. A sea of similar software components 
called Hardware Control Daemons (HCD) at layer 1 
controls the TMT low-level hardware of the telescope, 
adaptive optics, and instruments.  

Each HCD is associated with one or more networked 
motion controllers or other low-level hardware controllers 
(shown as layer 0 in Figure 3). The HCDs act as adapters 
and provide a uniform software interface and feature set 
focused on device control to the layers above. The HCDs 
are always executing, and each can be accessed at any 
time by the software layers above. 

This layer is one place where external systems can be 
integrated. As an adapter, a HCD can isolate a proprietary 
connection to an external system making it look like a 
conforming system device. The HCD also provides a 
suitable location for device simulation allowing device 
end-to-end system testing without hardware presence. 

Assembly Layer 
The Assembly Layer exists just above the Hardware 

Layer at layer 2 in Figure 3. Software at this layer consists 
of components called Assemblies with two roles in the 
OMOA. The first role is to allow the grouping of HCDs 
into higher-level entities. This is required when individual 
hardware devices must be considered as a unit or 
requiring processing. The second role of components in 
the Assembly Layer is to provide more sophisticated 
hardware control functionality that integrates devices 
across different HCDs to produce higher-level devices or 
add uniformly useful capabilities.  

Assemblies can be transient or long-lived. An example 
of a long-lived Assembly is one that provides telescope 
pointing, tracking, and offsetting. An Assembly can also 
be created dynamically to provide combinations of HCDs 
that need to be coupled for a specific observing mode 
during an observation. An example might be the 
coordination of wavefront sensor detector readout 
processing and the control of the probes for the wavefront 
sensors. 

Sequencing Layer 
The Sequencing Layer is layer 3 in Figure 3. 

Components at this level are called sequencers because 
they control and synchronize the actions of the HCDs and 
Assemblies. The sequencer components are dynamically 
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created and composed in order to execute a specific 
observing mode. This approach is possibly the most 
innovative part of this software architecture, because it is 
this layer that gives the software its compositional 
flexibility and other qualities. Individual sequencers can 
provide higher-level control of a set of distributed 
hardware. The ability to cut across the development 
hardware boundaries and compose and control hardware 
as needed is what allows this approach to eliminate many 
of the challenges mentioned in Table 2.  

The components in this layer share software interfaces 
that allow them to be plugged together to form the 
sequencing engine for a specific observing mode. There 
can be one or many sequencing components in an 
observing mode sequencer. The goal is that the 
sequencing components for a mode be assembled into a 
single process. This minimizes complexity and 
performance issues related to distributed processes and 
communication of commands across process and machine 
boundaries. A large amount of software related to 
command input/output in systems is eliminated, and fewer 
tiers result in higher performance and simplicity. 

 

Figure 4: A simple example showing the lowest 4 layers 
of an OMOA observing mode configuration. 

The sequencer for an observing mode is constructed 
during observation execution with a Configuration 
Factory that takes as input an observing mode and an 
observation description from another software tool such 
as a high-level planning GUI. The Configuration Factory 
has been programmed with instructions on how to 
construct the matching sequencing process for the 
observing mode. 

Figure 4 shows a simplified, partial example of an 
instrument like TMT’s MOBIE in a seeing-limited 
observing mode. At the lowest level are the HCDs for the 
wavefront sensor probes, instrument hardware, and 
detectors. An assembly exists to integrate and provide 
higher level functions for the wavefront sensor hardware 
and detector. All other sequencing for the observing mode 
is in the Observing Mode Sequencer that is created 
dynamically for the observation. The HCD components 
could be separate processes running on distributed 
hardware while the sequencing components exist in a 
single process within the Observatory Controls. 

This example demonstrates the flexibility inherent in 
this approach. It allows the grouping of software and 
hardware in an optimal arrangement for a specific 
observing mode with only the functionality needed to 
support a specific mode. During operations this allows 
new observing modes to be rolled out more easily with 
minimal influence on current functionality. 

Monitoring/Control Layer 
The Monitoring/Control Layer (layer 4 in Figure 3) is 

the layer of software that contains the user interface 
programs that are used to observe with the telescope. At 
TMT there will be graphical user interfaces for use by 
observers during the night. These applications use the 
CSW services to control and monitor the system. 

SUMMARY 
The TMT software architecture is similar to the systems 

constructed for 8m telescopes, but it has been enhanced to 
take advantage of changes in software and hardware 
technology as well as 10 years of experience with the 
principal system architecture approach. 

The TMT technical architecture is based on a set of 
shared software services, each of which is itself based on 
open-source or commercial software. 

The functional architecture uses the structuring 
approach of the Observing Mode Oriented Architecture. 
The goal of OMOA during observation execution is to 
allow, for any given observing mode, the minimal amount 
of software needed to execute the mode. By taking this 
approach, many of the problems outlined in Table 1 are 
minimized or eliminated. 

The innovation in OMOA is the implementation of the 
principal systems as more focused fine-grained 
components at the architectural level. This single change 
provides the opportunity to reduce the amount of software 
needed at the telescope, thereby reducing the complexity 
of the runtime system. This, coupled with the use of 
dynamic system configurations focused on executing 
individual observing modes, addresses the need to 
sequence systems with more flexibility and higher 
performance than currently possible. 
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