

MEASUREMENT OF BEAM LOSSES USING OPTICAL FIBRES AT THE AUSTRALIAN SYNCHROTRON

E. Nebot del Busto ^(1,2), <u>M. J. Boland</u> ^(3,4), E. B. Holzer ⁽¹⁾, P. D. Jackson ⁽⁵⁾, M. Kastriotou ^(1,2), R. P. Rasool ⁽⁴⁾, J. Schmidt ⁽⁶⁾ and C.P. Welsch ^(2,7)

- (1) CERN, Geneva, Switzerland.
- (2) The University of Liverpool, Department of physics, Liverpool, U. K.
- (3) Australian synchrotron, Clayton, Victoria, Australia.
- (4) The University of Melbourne, Melbourne, Australia.
- (5) The University of Adelaide, School of Chemistry and Physics, Australia.
- (6) Albert-Ludwig Universitaet Freiburg, Germany.
- (7) The Cockcroft Institute, Warrington, U.K.

Background: T. Obina and Y. Yano, IBIC'13, WECL1

- •An introduction to the Australian Synchrotron (AS)
- •The AS as a Damping Ring (DR): CLIC DR and AS common parameters
- •Optical fiber Beam Loss Monitors (OBLM) and the experimental setup
- Measurement discussion:
- Intensity calibration
- OBLM single shot calibration
- User fill measurements (Topup injections)
- Dynamic aperture and coupling scans (CLIC-like fill scans)

Summary and conclusions

The Australian Synchrotron

•The AS comprises

LINAC (10 m): 90 keV to 100 MeV
Booster (130 m): 100MeV to 3 GeV
Storage Ring (216 m): 3 GeV

SR main parameters							
Energy	3 GeV						
Total design current	200 mA						
Circumference	216 metres						
RF frequency	499.654 ± 0.1 MHz						
Energy loss per turn (dipoles only)	931 keV						
Dipole field (nominal)	1.3 T						
Beam size in dipoles	$\sigma_x - 87 \mu m, \ \sigma_y - 60 \mu m$						
Beam size in straights	$\sigma_x - 320 \mu m, \ \sigma_y - 16 \mu m$						
Number of possible Insertion devices	12						
Emittance	$\epsilon_x - 10 \text{ nm}$						
Coupling (nominal)	1%						

Schematic view of a DBA cell in the SR arc

IBIC14

The Australian Synchrotron as Damping Ring

•Ultra-low beam sizes at the interaction	Parameter	AS	CLIC DR
points in future colliders will be achieved	Energy (GeV)	3.0	2.86
points in ruture conders will be achieved	Intensity (elec)	$9.0 \cdot 10^{+11}$	$1.28 \cdot 10^{+12}$
via damping rings	Number of bunches	300	312
synchrotron light production as a means of heam	Pulse lenght (ns)	600	156
synchrotron light production as a means of beam	Circ. lenght (m)	216	427.5
cooling	f_{rev} (MHz)	1.38	0.73
targeting ultra low (pm level) normalized emittances	Bunch spacing (ns)	2	0.5
Current 3rd generation light sources, e.g the AS,	$\gamma \epsilon_x$ (nm rad)	58708	472
reach some of those conditions	$\gamma \epsilon_y$ (nm rad)	< 5	4.8

•Many similarities on main parameters between AS and CLIC DR

Flexibility to approach other important parameters
e.g ~150 ns pulse length by filling dedicated RF buckets

Ideal facility for testing DR dedicated instrumentation
 e.g Beam Loss Monitoring (BLM) systems

Optical fibre BLMs: Experimental setup

- Why an Optical fiber BLM (oBLM) system in the AS (CLIC DR)?
- The full ring can be covered with a few (< 10) BLMs</p>
- Cherenkov-based fiber BLMs would be insensitive to synchrotron radiation
- Two (one) 7 m (5 m) optical fibers with 365 μm (200 μm) SiO₂ core, coupled to:
- Multi Pixel Photon Counter (MPPC)
- PMT
- APD
- Pin diode, NaI and NE102 scintillators in neighbouring locations for comparison purposes

Dipole

side view

Scrapers

- •The oBLM systems needed to be calibrated against known number of lost particles
- •Single bunch, of known intensity, directed onto a closed scraper:
- Booster or BTS charge monitor of no use due to uncertainty on injection efficiency
 No SR DCCT (single turn exercise)
- Statistical calibration: charge accumulation in storage ring (with open scrapers)

 Varying parameter: Voltage of electron gun grid

• Intensity range achieved: 5.0 x 10⁺⁵ - 1.1 x 10⁺⁹ electrons

- •The oBLM systems needed to be calibrated against known number of lost particles
- •Single bunch, of known intensity, directed onto a closed scraper:
- Booster or BTS charge monitor of no use due to uncertainty on injection efficiency
 No SR DCCT (single turn exercise)
- Statistical calibration: charge accumulation in storage ring (with open scrapers)

 Varying parameter: Position of energy selection slit grid on BTS

- Intensity range achieved: 100 0.5 % of nominal (i.e slit at 11 mm)
- ▶ For Vgun = 181V \rightarrow 5 x 10⁺³ 2.5 x 10⁺⁵ electrons

•Numerical integration of the signals forms was performed to compare the sensitivity of the oBLM system for 3 photo-sensors

MPPC require 2nd order fit due to saturation

effects

-illuminated area $1.04 \times 10^{+5} \mu m^2$

-pixel area 25 x 25 μ m²

- -Saturation expected for $N_{ph} > 1.04 \times 10^{+5}/625 = 167$
- PMT fit compatible with straight line (no

saturation observed)

APD shows flat behaviour as system provides a (binary) TTL output

•Numerical integration of the signals forms was performed to compare the sensitivity of the oBLM system for 3 photo-sensors

Topup injection

Topup injection: Signal modulation

- Frequency Analysis
- 11 kHz band (synchrotron tune)
- 1.38 MHz (rev frequency)
- 400 kHz band (vertical tune)

Nal NE102 oBLM MPPC oBLM PMT

IBIC14

E. Nebot

Dynamic Aperture and Coupling scans

 Observation of beam losses with user-fill while squeezing Dynamic aperture and changing betatron coupling unsuccessful due to large noise

•Measurement of beam losses during betatron coupling scan with CLIC-like beam

- 11 independent skew quadrupole settings: vert. emit. range 0.001 to 2 nm
- 8 pulses/quad setting
- scraper position at 15 mm to enhance beam losses

measurement	1	2	3	4	5	6	7	8	9	10	11
nm	0.001	0.002	0.005	0.01	0.02	0.05	0.1	0.2	0.5	1	2

•The AS has proved to be an ideal facility for instrumentation targeting DR

•BLM system based on optical fibers is feasible

Sensitive down to ~10k electrons lost in single location with MPPC
 Linear response up to 1.0 x 10⁺⁹ electrons with PMT
 Combination of photon-sensors → dynamic range ~10⁺⁵

Potential for measuring tunes

•System sensitive to "steady-state" losses with charge integration

Increase on detector signal with betatron coupling

Come to IBIC 2015!!! 13-17 September 2015 Melbourne, Australia www.ibic2015.org

IBIC 15