DEVELOPMENT OF A MODIFIED SIX-PORT DISCRIMINATOR FOR PRECISE BEAM POSITION MEASUREMENTS

<u>A. Penirschke</u>, T. Mahn, A. Angelovski, M. Hansli, R. Jakoby

Institute for Microwave Engineering and Photonics, Merckstrasse 25, Darmstadt, Germany Email: penirschke@imp.tu-darmstadt.de Internet: www.imp.tu-darmstadt.de

Outline

- Motivation Energy BPM for FLASH and XFEL
- Six-Port Reflectometer
- System Measurements
- Conclusion & Outlook

 $dx \sim \frac{dE}{E}$

- EBPM: Energy Beam Position Monitor in the dispersive section of a bunch compressor chicane for energy measurements
- Position measurement proportional to bunch energy
- Current implementation at FLASH
 Geramic disk
 Beam direction dx
 Ceramic disk
 Beam direction dx
 Ceramic disk
 Description
 Descrintion
 <l

- Upgrade of EBPMs at FLASH and European XFEL necessary
- Design parameters for FLASH and the European XFEL

	FLASH	XFEL
L [mm]	183	400
H [mm]	8	40.5
Frequency [GHz]	1.3	3
Bunch charge [pC]	<200	20

Improved, mechanical stable design of the pickup structures necessary

Planar transmission line pickups

Microstrip transmission line as a
 Baseline design¹ for FLASH and XFEL

¹Angelovski et al. MOPA47, IBIC 2012, Tsukuba, Japan ² Penirschke et al. TUPC29, IBIC 2013, Oxford, UK Grounded coplanar waveguide transmission line as an Improved option² for FLASH and XFEL

- Taper of substrate height improves the input reflection
- Complicated structure; fabrication with standard substrate hardy possible

- Taper of substrate height improves the input reflection
- Complicated structure; fabrication with standard substrate hardy possible

active sensor area

taper

✓ Substrate made of melted glass in cavity

taper

Pickup voltage signal @ 20pC

IMF

- Taper of substrate height improves the input reflection
- Complicated structure; fabrication with standard substrate hardy possible

active sensor area

taper

✓ Substrate made of melted glass in cavity

Pickup voltage signal @ 20pC

Outline

- Motivation Energy BPM for FLASH and XFEL
- Six-Port Reflectometer
- System Measurements
- Conclusion & Outlook

Six-Port Reflectometer for Phase Difference Measurements

Six-Port Reflectometer for Phase Difference Measurements

Six-Port Reflectometer for Phase Difference Measurements

Six-Port Reflectometer Operation principle

IM

13.09.2014 | ETiT | Institute for Microwave Engineering and Photonics | Dr. Andreas Penirschke | 9

Six-Port Reflectometer Operation principle

Port 1: 2*a* Port 2: 2*b*

Port 3:
$$\frac{\sqrt{3}}{2}a - \frac{\sqrt{3}}{\sqrt{2}}b$$

Port 4: $\frac{\sqrt{3}}{2}a$
Port 5: $\frac{\sqrt{3}}{2\sqrt{2}}a + j\frac{\sqrt{3}}{2}b - j\frac{\sqrt{3}}{2\sqrt{2}}a$
Port 6: $\frac{\sqrt{3}}{2\sqrt{2}}a - j\frac{\sqrt{3}}{2}a - j\frac{\sqrt{3}}{2}b$

Six-Port Reflectometer Operation principle

Six-Port Reflectometer Design

CST simulation model Agilent ADS layout **Rogers RT/Duroid® 6010LM Dielectric constant** 10.2 Realized circuit 1.27 mm Substrate thickness Conductor thickness 18 µm

Six-Port Reflectometer Design

comparison between ADS and CST simulations

TECHNISCHE UNIVERSITÄT DARMSTADT

Six-Port Reflectometer Design

Comparison between ADS simulations and Measurements

TECHNISCHE UNIVERSITÄT DARMSTADT

Outline

- Motivation Energy BPM for FLASH and XFEL
- Six-Port Reflectometer
- System Measurements
- Conclusion & Outlook

Six-Port Reflectometer for Phase Difference Measurements

Measurement Setup

Microstrip EBPM Pickup

Six Port Reflectometer

Coupling loop (not to scale)

Measurement Setup

Beam induced excitation modeled with a small coupling loop in the vicinity of the transmission line

Phase stable Semi-Rigid cables

3D Micro-Positioner (not shown)

13.09.2014 | ETiT | Institute for Microwave Engineering and Photonics | Dr. Andreas Penirschke | 16

Six Port Reflectometer

Measurement Results

Detection range: 43 mm (1mm step size)

Power measurements

Port 4: 3 dBm variation due to

- mismatch &
- TL-losses

Port 3: 15 dBm periodic variation Port 5: 35 dBm periodic variation

phase ambiguity, leads to multiple solutions, when position is calculated

> Lower operation frequency needed for coarse detection

Measurement Results

Detection range: 3 mm (100µm stepsize)

Port #	Variation [dBm]	Sensitivity [dBm/μm]
4	1	0.0025
3	8	0.02
5	20	0.05

A standard power meter fulfills the requirements of 0.1dBm typically down to -70dBm.

Outline

- Motivation Energy BPM for FLASH and XFEL
- Six-Port Reflectometer
- System Measurements
- Conclusion & Outlook

Conclusion

- A simple and passive read out scheme the EBPM Pickup structures for energy measurements of free-electron lasers such as FLASH or XFEL was introduced
- The EBPM requires a high dynamic range over the sensor length of 183 mm and high resolution of less than 20 μm
- The proposed design provides a sensitivity of more than 5dBm/mm beam offset for a mean value of -60dBm for the non hermetic test setup
- For the high resolution of less than 20 μm a sensitivity of 0.1dB at the given power level is sufficient

Conclusion

- A simple and passive read out scheme the EBPM Pickup structures for energy measurements of free-electron lasers such as FLASH or XFEL was introduced
- The EBPM requires a high dynamic range over the sensor length of 183 mm and high resolution of less than 20 μm
- The proposed design provides a sensitivity of more than 5dBm/mm beam offset for a mean value of -60dBm for the non hermetic test setup
- For the high resolution of less than 20 μm a sensitivity of 0.1dB at the given power level is sufficient

Outlook

- Realization of a Six-Port Spectrometer @ 1.3GHz to prevent phase ambiguity
- Further investigations about the detector circuit is needed

Outlook Diode Detector Circuit

- Power detection using Zero-Bias Schottky diodes
- dBm linear rectifier circuit based on a combination of a Villard circuit and a voltage divider

Outlook Diode Detector Circuit

Detector circuit

- Sensitivity needs to be improved
- Adaption to input and output impedance necessary
- Integration to six-port discriminator

Thank you for your attention

