

Radiation Sources and their Application for Beam Profile Diagnostics

Gero Kube DESY / MDI gero.kube@desy.de

- Introduction to Imaging
- Transverse Profile Measurements based on OTR and ODR
- Parametric X-Ray Radiation
- Coherent Radiation Diagnostics and Smith-Purcell Radiation

Size Measurements

• task

- > determination of beam profile
 - \rightarrow measurement of characteristical size (rms, ...)
- conventional size measurement
- take object and measure

- difficulties
- object extremely small
- object not directly accessible
 - \rightarrow inside vacuum beam pipe, accelerator environment, ...

optical imaging

> generate replica in comfortable environment

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014

courtesy: J. Amundson (FNAL)

Imaging and Resolution

neglect lens imperfections (aberrations)

0

diffraction limited systems high quality, aberration-free systems fundamental resolution limit ۰ location of emission point? point observer detecting photons from point emitter \rightarrow λ Х Δx $NA = sin\vartheta$: $\Delta \mathbf{p}_x = 2\hbar \mathbf{k} \cdot \sin \vartheta \approx 2 \cdot \frac{h}{2\pi} \cdot \frac{2\pi}{\lambda} \cdot \sin \vartheta$ Δx numerical aperture observer point emitter λ lens $\Delta \mathbf{x} \cdot \Delta \mathbf{p}_x \approx h$ uncertainty principle: $\Delta x \approx \Rightarrow$ $2\sin\theta$ high resolution: (i) small λ (ii) high NA • image of point source http://www.astro.ljmu.ac.uk $M\lambda$ $\Delta x = 0.61$ sins point-like Airy object pattern magnification M lens image

Fundamentals of Image Formation

- detailed resolution information
 - requires basic knowledge of image formation
- simple imaging setup

procedure

- \rightarrow calculate image of point source (single particle radiation) \rightarrow Point Spread Function (PSF)
- $\rightarrow \quad \text{image of extended object} \quad \rightarrow \quad 2\text{-dim. convolution of source distribution and PSF}$
- $\rightarrow \quad \text{difference beween source distribution and image} \quad (\text{resp. PSF})$

PSF calculation

- el. field in source plane
- Field propagation from element to element \rightarrow in frame of scalar diffraction theory
 - (i) source plane lens input (ii) lens input lens output (iii) lens output image plane
- intensity distribution in the image plane

Fundamentals of Image Formation

source field

- \rightarrow radiation field \rightarrow depends on mechanism of radiation generation
- propagation
 - scalar diffraction theory

(here: from source to lense plane)

$$E_{x_l,y_l}^{l}(\vec{r}_l,\omega) = -i\frac{e^{ika}}{\lambda a} \cdot e^{i\frac{k}{2a}(x_l^2 + y_l^2)} \int_{-\infty-\infty}^{+\infty+\infty} dx_s dy_s E_{x_s,y_s}^{s}(\vec{r}_s,\omega) \cdot e^{i\frac{k}{2a}(x_s^2 + y_s^2)} \cdot e^{-ik\frac{x_sx_l + y_sy_l}{a}}$$

aperture boundaries

• far field (Fraunhofer) approximation:

$$\frac{k}{2} \left(x_s^2 + y_s^2 \right)_{\max} \ll a$$

$$E_{x_l,y_l}^m(\vec{r}_l,\omega) = -i\frac{e^{ika}}{\lambda a} \cdot e^{i\frac{k}{2a}(x_l^2 + y_l^2)} \int_{-\infty-\infty}^{+\infty+\infty} dx_s dy_s E_{x_s,y_s}^s(\vec{r}_s,\omega) \cdot e^{-i(k_x x_s + k_y y_s)} \propto \mathcal{F}(E_{x_s,y_s}^s) \qquad \left(k_{x,y} = k\frac{x_l,y_l}{a}\right)$$

- → basis of **Fourier Optics**
- thin lens approximation

quadratic phase shift:
$$E_{x_l,y_l}^{l_{out}}(\vec{r}_l,\omega) = E_{x_l,y_l}^{l_{in}}(\vec{r}_l,\omega) \cdot e^{-i\frac{\kappa}{2f}(x_l^2+y_l^2)}$$
 with $\frac{1}{f} = \frac{1}{a} + \frac{1}{b}$

intensity

$$\frac{\mathrm{d}^2 W}{\mathrm{d}\omega \mathrm{d}\Omega} = \frac{\mathrm{c}}{4\pi^2} \left(\left| \vec{E}_{x_i}^i(\vec{r}_i, \omega) \right|^2 + \left| \vec{E}_{y_i}^i(\vec{r}_i, \omega) \right|^2 \right)$$

Image Formation: Systems Approach

image formation

systems approach to imaging (Fourier Optics)

- Point Spread Function (PSF)
 - \rightarrow image of a point source (single particle)
 - \rightarrow characteristic of the imaging instrument
 - \rightarrow deterministic function
- **noise**
 - \rightarrow nondeterministic function
 - \rightarrow described in terms of statistical distributions
- "standard" signal theory
 - \rightarrow 1-dim. signals (in time domain)
 - \rightarrow system analysis with delta pulse
- imaging
 - \rightarrow 2-dim. signals (in spatial domain)
 - → system analysis with point source system response: PSF

Radiation Generation: Considerations

- radiation generation via particle interaction with matter
 - Iuminescent screen monitors
- radiation generation via particle electromagnetic field
- > particle electromagnetic field

electric field lines in LAB frame

$$\gamma = E / m_0 c^2$$

E : total energy $m_0 c^2$: rest mass energy

proton: $m_p c^2 = 938.272 \text{ MeV}$ **electron:** $m_e c^2 = 0.511 \text{ MeV}$

 $\gamma \rightarrow \infty$: plane wave

- $mc^2 = 0 MeV$:
- ultra relativistic energies :

light \rightarrow "real photon"

idealization \rightarrow "virtual photon"

Separation of Particle Field

- electromagnetic field bound to particle observation in far field (large distances)
- separation mechanisms
 - bending of particle via magnetic field
 - synchrotron radiation

circular accelerators

linear accelerators: no particle bending !

diffraction/reflection of particle electromagnetic field via material structures exploit analogy between real/virtual photons:

 \leftrightarrow

- light reflection/refraction at surface \leftrightarrow
- light diffraction at edges
- light diffraction at grating
- light (X-ray) diffraction in crystal

separate field from particle

- backward/forward transition radiation (TR)
- diffraction radiation (DR) \leftrightarrow
- Smith-Purcell radiation \leftrightarrow
 - parametric X-ray radiation (PXR) ...

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014

Synchrotron Radiation

- circular accelerator: radiation source available for free
 - bending magnet (wiggler, undulator)
- non-invasive
- strong collimation (vertical)
 - > opening angle:

- emission over wide spectral range
 - choice of operational range

polarized

define vertical angular divergence

• particle beam diagnostics: resolution

electric field propagation through optical elements

SR Field: Standard Text Book

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014

Synchrotron Radiation Field

second representation: starting point again Liénard-Wiechert potentials

$$\varphi(t) = \left(\frac{-e}{R\left(1 - \hat{n} \cdot \vec{\beta}\right)}\right)_{\tau}, \quad \vec{A}(t) = \left(\frac{-e\vec{\beta}}{R\left(1 - \hat{n} \cdot \vec{\beta}\right)}\right)_{\tau}$$

Fourier transform of potentials:

$$\varphi(\omega) = -e \int_{-\infty}^{+\infty} d\tau \frac{1}{R(\tau)} e^{i\omega(\tau+R(\tau)/c)} , \quad \vec{A}(\omega) = -e \int_{-\infty}^{+\infty} d\tau \frac{\vec{\beta}(\tau)}{R(\tau)} e^{i\omega(\tau+R(\tau)/c)}$$
$$\vec{E}(\omega) = -\frac{i\omega e}{c} \int_{-\infty}^{+\infty} d\tau \left[\frac{(\vec{\beta}-\hat{n})}{R(\tau)} - \frac{ic}{\omega} \frac{\hat{n}}{R^2(\tau)} \right] e^{i\omega(\tau+R(\tau)/c)}$$

with
$$\tau = \int_{0}^{z} \frac{\mathrm{d}z}{c\beta_{z}(z)} = \frac{1}{c} \int_{0}^{z} \mathrm{d}z \left[1 + \frac{1 + (\gamma\beta_{x})^{2} + (\gamma\beta_{y})^{2}}{2\gamma^{2}} \right]$$

field derivation:

knowledge of arbitrary particle orbit: arbitrary magnetic field configuration:

 $\vec{E}(\omega)$ determined determines orbit and $\vec{E}(\omega)$

- comments: (i) exact field description
 - (ii) includes depth of field & curvature
 - (iii) free codes available

- → numerical near field calculation
- \rightarrow no additional contributions, only field propagation
- → easy field calculation, even field propagation!
- SRW: <u>http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/SRW</u> Spectra: http://radiant.harima.riken.go.jp//spectra/index.html

(Tanaka & Kitamura, SPring8)

(Chubar & Elleaume, ESRF)

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014

O.Chubar and P.Elleaume,

Proc. EPAC96, Stockholm (1996) 1177

F. Ewald et al., Proc. IBIC 2013, Oxford, UK (2013) 833

- X-ray imaging: non-focusing optics
 - > pinhole camera

example: Diamond Light Source

C. Thomas et al., Phys. Rev. ST Accel. Beams 13 (2010) 022805

Gero Kube, DESY / MDI

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014

15

1.0

Light Sources: Emittance Diagnostics

SR interferometer

T. Mitsuhashi, Proc. of BIW 2004 Knoxville, Tennessee, p.3

USR studies at PETRA III (DESY):

 $\varepsilon_x = 160 \text{ pm.rad}$ @ 3 GeV

• π -polarisation imaging

V. Schlott et al., Proc. IBIC 2013, Oxford, UK (2013) 519

widely applied @ SLS

coded aperture imaging

R.H. Dicke, Astrophys. Journal 153, L101, (1968)J.W. Flanagan et al., Proc. DIPAC 2011, Hamburg, Germany (2011) 561C. Bloomer, "Coded Aperture @ DLS", TUCZB2

0.0

0.5

Constant Linear Motion

• source field

- point charge with constant velocity v
- → Liénard-Wiechert fields

$$\Rightarrow \vec{E}(t) = -e\left(\frac{\left(1-\beta^2\right)\left(\hat{n}-\vec{\beta}\right)}{R^2\left(1-\hat{n}\cdot\vec{\beta}\right)^3} + \frac{\hat{n}\times\left[\left(\hat{n}-\vec{\beta}\right)\times\vec{\beta}\right]}{cR\left(1-\hat{n}\cdot\vec{\beta}\right)^3}\right)_{\tau},$$

- common representation
- cylindrical coordinate system

 $\vec{H}(t) = \hat{n} \times \vec{E}(t)$

no acceleration term

$$\implies \vec{E}(\rho,\varphi,z,\omega) = \frac{e\alpha}{\pi v} e^{i\frac{\omega}{v}z} \left(K_1(\alpha\rho)\hat{e}_{\rho} - \frac{i}{\gamma} K_0(\alpha\rho)\hat{e}_z \right) \quad \text{with} \quad \alpha = \frac{\omega}{\gamma v}$$

- ultra-relativistic particles $(\gamma >> 1)$
 - \rightarrow neglect longitudinal field component
 - \rightarrow pure transverse "pancake" structure
 - \rightarrow radial extension: $\alpha \rho \approx 1$

$$\rho = \frac{\lambda\beta\gamma}{2\pi} \approx \gamma\lambda$$

3-dim. theories

angular distribution

A.G. Shkvarunets and R.B. Fiorito, Phys. Rev. ST Accel. Beams 11 (2008) 012801

virtual photon range

D.V. Karlovets and A.P. Potylitsyn, Nucl. Instr. and Meth. B266 (2008) 3738

separation of field \rightarrow different radiation sources

Transition Radiation

OTR Monitor Resolution

HELMHOLTZ GEMEINSCHAFT

- PSF calculation in image plane
 - > field propagation in frame of scalar diffraction theory

$$E_{x_l,y_l}^{l}(\vec{r}_l,\omega) = -i\frac{e^{ika}}{\lambda a} \cdot e^{i\frac{k}{2a}(x_l^2+y_l^2)} \int_{-\infty-\infty}^{+\infty+\infty} dx_s dy_s E_{x_s,y_s}^{s}(\vec{r}_s,\omega) \cdot e^{i\frac{k}{2a}(x_s^2+y_s^2)} \cdot e^{-ik\frac{x_sx_l+y_sy_l}{a}}$$

integration limits

care: screen dimension \leftrightarrow field extension $\gamma\lambda$

 \rightarrow might modify radiation properties

OTR resolution for beam imaging

(far field)

- M. Castellano and V.A. Verzilov, Phys. Rev. STAB 1 (1998) 062801
- A.P. Potylitsyn, in "Advanced Radiation Sources and Applications", p.149
- D. Xiang, W.-H. Huang, Nucl. Instr. Meth. A570 (2007) 357
- G. Kube, TESLA-FEL Report 2008-01
- G. Stupakov, SLAC-PUB-14758 (2011)

- resolution definition according to classical optics:
 - \implies first minimum of PSF
 - $(\rightarrow \text{ diameter of Airy disk})$

$$R_{i0} \approx 1.12 \frac{M\lambda}{\theta_m}$$

- M: magnificationθ_m: lens acceptance angle (NA)
- $\theta_{\rm m}$ determined by optics, **not** by radiation properties !

OTR Monitors

• standard monitors @ e-Linacs

- $\blacktriangleright~10~keV$: R.B. Fiorito et al., Proc. PAC 2007, p.4006
- > 30 GeV: P. Catravas et al., Proc. PAC 1999, p.2111

• OTR @ hadron accelerators

- protons: O.V. Afanasyev et al., Proc. BIW 2006, p.534
 V.E. Scarpine et al., Proc. BIW 2006, p.473
- heavy ions: B. Walasek-Höhne et al., Proc. HB 2012, p.580

COTR and possible Mitigation

unexpected Coherent OTR observation during LCLS commissioning

R. Akre et al., Phys. Rev. ST Accel. Beams 11 (2008) 030703

- strong shot-to-shot fluctuations
- doughnut structure
- change of spectral contents

measured spot is no beam image!

40 60

courtesy: H. Loos (SLAC)

• interpretation of coherent formation in terms of "Microbunching Instability"

E.L. Saldin et al., NIM A483 (2002) 516

Z. Huang and K. Kim, Phys. Rev. ST Accel. Beams 5 (2002) 074401

G. Stupakov, Proc. IPAC 2014, Dresden, Germany (2014), p.2789.

• alternative schemes for transverse profile diagnostics

- short term perspective: scintillating screen monitors
- long term perspective: TR imaging at smaller λ

proof of principle experiment (a) $\lambda = 19.6$ nm: L.G. Sukhikh et a

L.G. Sukhikh et al., Proc. IPAC 2012, New Orleans (USA), p. 819

and submitted to PRST-AB

additional advantage of better resolution

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014

PSF dominated Imaging

image formation

standard imaging:

minimize PSF contribution

- PSF dominated imaging
 - object size << PSF

image dominated by PSF properties

- non-zero object size
 - smearing out of PSF
 - beam size determination \rightarrow via image contrast
- resolution below diffraction limit
 - resolve sub-micron beam sizes with optical methods
- experimental verification
 - synchrotron radiation π -polarisation imaging
 - test experiment @ ATF2
 - minimum measured beam size (0.754 ± 0.034) µm

K. Kruchinin et al.. Proc. IBIC 2013, Oxford, UK, 615 J. Phys.: Conf. Series 517 (2014) 012011

Gero Kube, DESY / MDI

OTR

IBIC14, Monterey California (USA), September 16, 2014

image is true replica of object

Diffraction Radiation

- problem OTR: screen degradation/damage
 - \rightarrow limited to only few bunch operation, no permanent observation
- Optical Diffraction Radiation (ODR): non-intercepting beam diagnostics
 - > DR generation via interaction between particle EM field and conducting screen

ODR Imaging

HELMHOLTZ GEMEINSCHAFT

- PSF calculation in image plane
 - field propagation in frame of scalar diffraction theory
 - \rightarrow no beam image, illuminated edge of half-plane

• ODR imaging for beam diagnostics

A. Lumpkin et al., Phys. Rev. ST Accel. Beams 10 (2007) 022802P. Evtushenko et al., Proc. BIW08, WECOTC01 (2008), p.332

- (relative) 1D beam size monitor: σ_x
 - \rightarrow (i) Gaussian beam profile
 - (ii) known distance between slit edge and beam center
 - \rightarrow pre-defined ROI: projected 1D intensity profile
 - \rightarrow fit profile with Gaussian distribution (σ_x)
 - \rightarrow cross-calibrate σ_x with OTR beam profiles
- > 1D beam position monitor
 - \rightarrow ODR centroid
 - \rightarrow achieved sensitivity: 50-100 µm
 - ($\sigma_x = 1.3$ mm, depends on beam size)

D. Xiang et al., Phys. Rev. ST Accel. Beams 10 (2007) 062801

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014

ODR Angular Distribution

- angular distribution dependence
 - on beam size
 - on beam offset
 - beam centered in slit aperture
 - on beam divergence x'
 - interferometric methods
- 1D beam size determination ٠

P. Karataev et al., Phys. Rev. Lett. 93 (2004) 244802 and Nucl. Instrum. Meth. B207 (2005) 158

very low emittance beam ($\varepsilon_y = 1.5 \text{ x } 10^{-11} \text{ m.rad}$) @ KEK-ATF, centered in slit

exploit visibility Imin / Imax of projected vertical polarization component

E = 680 MeV

 $\lambda = 800 \text{ nm}$

350

300

Intensity (arb. units)

800

600

400

200

IBIC14, Monterey California (USA), September 16, 2014

0 µm

50 µm

ODR Interferometry

beam divergence: DR / ODTR interferometer

R.B. Fiorito and D.W. Rule, NIM B173 (2001) 167

R.B. Fiorito et al., Phys. Rev. ST Accel. Beams 9 (2006) 052802M.A. Holloway et al., Phys. Rev. ST Accel. Beams 11 (2008) 082801

ODRI: 1D beam size determination @ FLASH (DESY)

(separation of beam size, divergence and offset)

A. Cianchi et al., Phys. Rev. ST Accel. Beams 14 (2011) 102803 and Proc. IPAC 2012, New Orleans, USA, p. 831

- compact double slit arrangement
- both slits with different sizes
 - second slit within radiation formation length of first one

 σ_y, σ_y' and offset by complex fit routine

slit centers slightly off-centered

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014

Parametric X-Ray Radiation (PXR)

- idea: higher photon energies $\hbar\omega$
 - better resolution
 - insensitive on coherent effects
- real photons ٠
 - Bragg reflection, crystals \land X-rays \leftrightarrow
- virtual photons ٠
 - field separation by Bragg reflection at crystal lattice
 - radiation field: **Parametric X-Ray Radiation (PXR)** \rightarrow
- crystal periodicity (3D)

discrete momentum transfer (reciprocal lattice vector $\vec{\tau}_{hkl}$)

emission of line spectrum \rightarrow

$$\vec{p}_{i} = \vec{p}_{f} + \hbar \vec{k} + \hbar \vec{\tau}_{hkl}$$

$$\delta E = \left(\vec{p}_{i} - \vec{p}_{f}\right) \cdot \vec{v} = \hbar \vec{k} \cdot \vec{v} + \hbar \vec{\tau}_{hkl} \cdot \vec{v} = \hbar \omega$$

$$\hbar \omega_{hkl} = \hbar c \frac{\left|\vec{\beta} \cdot \vec{\tau}_{hkl}\right|}{1 - \sqrt{\varepsilon} \vec{\beta} \cdot \hat{k}}$$

$$\varepsilon = 1 - |\chi_{0}|$$
dielectric constant (~ 1)

 \vec{E}_{ρ}

GEMEINSCHAFT courtesy: M.J. Winter

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014

Parametric X-Ray Radiation (PXR)

- PXR: Bragg scattering of virtual photons
 - virtual photon properties retained
 - \rightarrow double lobe angular distribution
- radiation generation inside crystal
 - material properties influence radiation characteristics

 \rightarrow angular width:

- background contribution: real photon diffraction
 - transition radiation from crystal entrance surface
 - \rightarrow diffracted at crystal planes under same Bragg angle

GEMEINSCHAFT

additional contribution to angular distribution

 \rightarrow DTR: smaller angular width

IBIC14, Monterey California (USA), September 16, 2014

Gero Kube, DESY / MDI

PXR for Beam Profile Diagnostics

ĥ

 $\hat{\tau}$

advantage of PXR diagnostics

- > spatial separation from COTR background
 - \rightarrow OTR reflection wrt. surface normal
 - \rightarrow PXR reflection wrt. reciprocal lattice

proposals

A. Gogolev et al., J. Phys.: Conf. Series **357** (2012) 012018Y. Takabayashi, Phys. Lett. **A 376** (2012) 2408

- detection scheme (1)
 - imaging with X-ray optics
 - \rightarrow sensitivity ?
- detection scheme (2)
 - X-ray scintillator/detector close to emission point
 - → conversion of X-rays to visible light allows usage of standard optics and CCD
 - \rightarrow parallel object and image plane
 - \rightarrow sensitivity, background ?

- detection scheme (3)
 - exploit angular distribution
 - \rightarrow requires exact knowledge of shape
 - PXR / DTR interference, ...
 - \rightarrow additional background contributions ?

PXR for Beam Profile Diagnostics

direct imaging with pinhole camera

Y. Takabayashi and K. Sumitani, Phys. Lett. A 377 (2013) 2577

- test experiment at SAGA Light Source (Japan)
 - 255 MeV linac beam, $f_{rep} = 1$ Hz, $I_{avg} = 7$ nA \rightarrow
 - Si crystal, $t = 20 \mu m$, (220) reflection (a) 11.6 keV \rightarrow
- OTR beam profile

PXR beam profile

 \rightarrow single shot

- 12600 shots
- 3.5 h exposure time

image plate as detector

detector close to emission point

- test experiment @ SAGA
 - Y. Takabayashi, Phys. Lett. A 376 (2012) 2408
 - image plate 55.6 mm from target crystal \rightarrow
 - 1 sec exposure time \rightarrow
 - image plate inside vacuum chamber \rightarrow
 - large background contribution \rightarrow

test experiment @ MAMI (Mainz, Germany)

G. Kube et al., Proc. IPAC 2013, Shanghai, China, p.491

- scintillator close to target + CCD
- sensitivity to low, no beam image

PXR Angular Distribution

angular distribution measurements

G. Kube et al., Proc. IPAC 2013, Shanghai, China, p.491

- test experiment @ MAMI (Mainz, Germany)
 - \rightarrow 855 MeV, $I_{avg} = 500 \text{ nA}$
 - \rightarrow use of low-cost X-ray CCD
 - \rightarrow (100)-cut Si-crystal, t = 50 µm

 $\hbar\omega(220) = 16.55 \text{ keV}$ $\hbar\omega(400) = 23.40 \text{ keV}$

 \rightarrow two (out of 6) beam configurations

Config 1: $\sigma_x = 45.7 \ \mu m$ Config 2: $\sigma_x = 44.7 \ \mu m$ $\sigma_y = 42.9 \ \mu m$ $\sigma_y = 796 \ \mu m$

angular distribution sensitive on beam size

- observation
 - $\theta_1 \text{ independent on photon energy:} \quad \theta_1 = 0.6 \text{ mrad} \approx 1/\gamma$
 - \rightarrow additional lobes at $\theta_2 \sim 1.8$ mrad
- interpretation
 - \rightarrow significant DTR contribution
 - \rightarrow additional contribution from diffracted bremsstrahlung ???

Longitudinal Profile Diagnostics

• Coherent Radiation Diagnostics (CRD)

single particle spectrum

standard method for radiation based bunch length diagnostics

O. Grimm, Proc. PAC 2007, Albuquerque, USA, p.2653

- basic procedure
 - > principle: bunch length/shape dependent emission spectrum of coherent radiation

bunch form factor

> measure radiation intensity as function of wavelength in spectral region of interest

 \rightarrow bunch length determination requires spectral decomposition of intensity

no. of particles per bunch

- → intensity-interferometer in THz region (Michelson or Martin-Puplett interferometer)
- Fourier transform
 - \rightarrow bunch profile and bunch length
- radiation generation
 - → <u>coherent radiation source</u>: synchrotron radiation, transition radiation, diffraction radiation,

Smith-Purcell radiation, Cherenkov radiation, ...

short bunch $(\lambda > \sigma_z)$

long bunch ($\lambda < \sigma_z$)

 $F(\lambda) = | dz S(z) e$

Coherent Radiation Diagnostics

• TR, DR or SR based CRD

- polychromatic emission spectrum
 - \rightarrow spectrometer required for spectral decomposition
- Michelson / Murtin-Puplett interferometers: scanning devices
 - \rightarrow no single-shot capability
- single-shot CRD
 - extension to multi-stage single-shot grating spectrometer

S. Wesch et al., Nucl. Instrum. Meth. A665 (2011) 40

Martin-Puplett interferometer @ FLASH

S. Wesch et al., Proc. BIW'12, Newport News (VA), USA, p.256

Smith-Purcell Radiation

- idea: dispersive radiation generation
 - radiation generation and analysis with one device
 - \rightarrow compact setup, option for single-shot capability
- Smith-Purcell radiation (SPR)
 - field separation
 - → virtual photon diffraction at 1D
 Bravais-structure (grating)
 - \rightarrow grating provides 1D discrete momentum

momentum conservation:

$$\vec{p}_{i} = \vec{p}_{f} + \hbar \vec{k} + \hbar n \frac{2\pi}{D} \hat{v}$$

$$\left(\vec{p}_{i} - \vec{p}_{f}\right) \cdot \vec{v} = \hbar \omega = \hbar \vec{k} \cdot \vec{v} + \hbar n \frac{2\pi}{D} \hat{v} \cdot \vec{v}$$

$$2\pi \frac{c}{\lambda} = \frac{2\pi}{\lambda} v \cos\theta + n \frac{2\pi}{D} v$$

$$n\lambda = D\left(\frac{1}{\beta} - \cos\theta\right)$$

→ SPR dispersion relation

- distance dependence
 - → range of el. field:
 2D field description:

 $\lambda\beta\gamma/2\pi$ $\vec{E}\propto \mathrm{e}^{-\frac{2\pi}{\lambda\beta\gamma}d}$

intensity scaling:

$$I \propto \left| \vec{E} \right|^2 \propto \mathrm{e}^{-\frac{4\pi}{\lambda\beta\gamma}d}$$

- > SPR identification
 - → dispersion relation: necessary condition
 - \rightarrow distance dependence: sufficient condition

SPR for Bunch Length Diagnostics

proposals ٠

M.C. Lampel, Nucl. Instrum. Meth. A 385 (1997) 19 D. Nguyen, Nucl. Instrum. Meth A 393 (1997) 514

bunch length monitor based on SPR ٠

G. Doucas et al., Phys. Rev. ST Accel. Beams 9 (2006) 092801 V. Blackmore et al., Phys. Rev. ST Accel. Beams 12 (2009) 032803 H.L. Andrews et al., Phys. Rev. ST Accel. Beams 17 (2014) 052802 @ 20.35 GeV (SLAC, FACET)

(FELIX) @ 45 MeV @ 28.5 GeV (SLAC, ESA)

dispersion relation:

1.5

(b)

wavelength (mm) for 1st order

2.0

5.5 ps fit

triangular, asymmetric

0

2.5

Time (ps)

3.0

Gaussian

0.5mm

1.0mm

1.5mm

convert angle θ to wavelength λ

 \rightarrow

critical items

- limited number of points for reconstruction \rightarrow
- single photon emission spectrum

- interferometer: typically about 200 points
- different model predictions, especially at high γ

D.V. Karlovets and A.P. Potylitsyn, Phys. Rev. ST Accel. Beams 9 (2006) 080701

1.0

Summary

- radiation physics widely used for beam diagnostics
 - longitudinal and transverse beam profiles
 - beam divergence, beam energy, ...
- circular accelerators: synchrotron radiation
 - new 3rd generation light sources with ultra-small beam sizes
 - \rightarrow X-ray imaging: possibility to measure beam sizes down to μ m level
- linear accelerators: working horse OTR (+ screens), ODR in experimental stage
 - OTR: invasive measurement, usually resolution of about 10 μm
 - ▷ better resolution \rightarrow smaller wavelengths (EUV), PSF-dominated imaging
 - > new 4th generation light sources \rightarrow coherent emission compromises use of OTR as reliable diagnostics
 - ODR: high resolution measurements via angular distribution \rightarrow ODRI offers possibility to resolve ambiguities
- PXR: interesting for X-ray region
 - still in early experimental stage \rightarrow first experiments in view of beam diagnostics
- CRD: bunch length/shape measurements
 - \rightarrow CTR, CDR, CSR \rightarrow spectral decomposition with interferometers
 - \triangleright CSPR \rightarrow dispersive emission characteristic, but still some open questions...

Outlook

commercial codes applied to radiation physics

TR generation with CST Particle Studio[®]

K. Lekomtsev et al., Journal of Physics: Conference Series 517 (2014) 012016

• OTR/ODR generation and propagation with ZEMAX[®]

T. Aumeyr et al., Proc. IBIC 2013, Oxford, UK, p.852

T. Aumeyr et al., Journal of Physics: Conference Series 517 (2014) 012026

T. Aumeyr et al., Proc. IPAC 2014, Dresden, Germany, p.3722

• (Surface) Cherenkov Radiation

- growing interest \rightarrow as radiation source
 - \rightarrow but also for beam diagnostics

A.S. Konkov et al., Journal of Physics: Conference Series 517 (2014) 012003 ...

Acknowledgment

- for the invitation to this conference and the opportunity to give a talk
- for stimulating discussions and help in preparation of this talk
 - → A. Cianchi (INFN and Univ. Rome), P. Karataev (RHUL), D. Nölle (DESY),
 - → A.P. Potylitsyn (TPU), N.A. Potylitsina-Kube (DESY), K. Wittenburg (DESY)
 - for your attention