Study of scintillation stability in KBr, YAG:Ce, CaF2:Eu and CsI:Tl irradiated by various-energy protons

Ling-Ying Lin National Superconducting Cyclotron Laboratory, U.S.A.

National Science Foundation Michigan State University

Motivation

Under ${H_2}^+$ irradiation: 1500 keV , 125 pA

Motivation

YAG:Ce under He^+ irradiation: 58 keV , 394 pA

ReF: L. Y. Lin et al., "Scintillation degradation of YAG: Ce under low-energy ion bombardment", JINST 6 P07010 (2013).

The irradiation experiments in the rare isotope ReAccelerator (ReA) facility of NSCL :

Experimental Setup

CsI:TI Scintillation Response

YAG:Ce Scintillation Response

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

CaF2:Eu Scintillation Response

CaF2:Eu Scintillation Response

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

CaF2:Eu Scintillation Response

Possible radiation damges of CaF2: Eu at room temperature

Interstitial F⁻

KBr Scintillation Response

KBr Scintillation Response

Light Yield VS. Particle dose ($^{ions}/_{mm^2}$)

The KBr sample after ion irradiation.

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

KBr Scintillation Response

Possible luminescence mechanism of KBr at room temperature

Scintillation Yield comparison

Scintillation Response at low and high beam energies

 25 keV/u data were measured by C. Benatti and G. Perdikakis in the low energy beam transport section of the ReA facility.

Scintillation Response at low and high beam energies

Beam Width Comparison

H_2^+ irradiation at the beam energy 2150 keV/u and current 12 pA

Beam Width Comparison

Conclusions

□ Under H_2^+ irradiation at the beam energies of 600-2150 keV/u and beam current of less than 400 pA:

	CsI:TI	CaF2:Eu	YAG:Ce	KBr
Light Yield	CsI:Tl > CaF2:Eu > YAG:Ce > KBr			
Light Yield VS. ion energy	Linear			
Scintillation stability	Stable	After an initical rapid decay, it becomes stable	Stable	Unstable
Beam width	Almost consistent and stable during irradiation			Unstable

Under low-energy ion bombardment, ion-induced defects are highly efficient to degrade transparency of scintillation photons inside an irradiated scintillator.

Thank you

U.S. Department of Energy Office of Science National Science Foundation Michigan State University