

Technical Developments in Support of Accelerator-based Science at SLAC

Marc Ross (SLAC LCLS-II)

International Beam Instrumentation Conference

September 15, 2014

Technical Developments for Accelerator-based Science

Basic Energy Science Advisory Committee (BESAC) and Particle Physics Project Prioritization Panel (P5)

- 1. BESAC recommends FEL construction:
 - SLAC proposed LCLS-II, now accepted,
 - a new 4 GeV CW superconducting linac
 - LCLS-II involves several US partner-labs
 - now in full-swing.
- 2. P5 strongly supports International Linear Collider (ILC) development,
 - directed toward construction in Japan.

Both rely on L-band superconducting RF (SRF)

technology in development for 25 years.

IBIC Monterey Sep 15, 2014 (M. Ross, SLAC)

SRF Development for particle physics deployment phase:

SRF technology was developed for use in high-energy physics accelerators.

Pioneers: e+/e- collider storage rings at DESY (Petra), Cornell (CESR), KEK (Tristan), and Cern (LEP)

Goal: cost-effective, high-gradient, reliable SRF for next generation e+/e- colliders: storage-ring 'factories' and linear colliders.

TESLA collaboration: increasing the practical SRF accelerating gradient to propose a multi-kilometer pulsed SRF linac.

- 1. increase industrial involvement,
- 2. reduce static cryogenic-loss,
- 3. improve packing-factor

SRF Development for particle physics deployment phase:

SRF for the International Linear Collider (2005 – present)

2012: International Linear Collider (ILC) Technical Design Report

- ILC Technical Design:
 - standardized, industrialized, production recipe for 1.3 GHz bulkniobium SRF cavities
 - Performance demonstration, production capability, cost estimate

European XFEL project, (DESY host), with roughly 100 (800 SRF resonator cavities) cryomodules using exactly this technology (2016)

LCLS-II project, (SLAC host), 300 cavities using the CW adaptation of this technology

IBIC Monterey Sep 15, 2014 (M. Ross, SLAC)

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)
- 2. LCLS-II
 - Free Electron Laser at SLAC based on ILC / E-XFEL SRF
- 3. SRF for LCLS-II
 - Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
 - Multi-lab partnership
- 4. Implications for ILC

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)
- 2. LCLS-II
 - Free Electron Laser at SLAC based on ILC / E-XFEL SRF
- 3. SRF for LCLS-II
 - Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
 - Multi-lab partnership
- 4. Implications for ILC

Before: TESLA Collaboration, XFEL, SRF R&D

2013: ILC TDR International Review (Feb)

Performance Demonstrations, Industrialization, Cost

2013: LCLS-II CW SRF Linac proposed to DoE – SC(BES) CD-0 (Aug), CD-1 (Aug 2014), CD-2/3 (3QFY15)

- 2014: High Q0 Process development (Apr Sep) Fermilab (lead), JLab, Cornell; (Cavities from FNAL)
- 2018: LCLS-II Cryomodule Construction Complete (Aug)

→ First light at end of FY2019

2018: US Infrastructure Qualified and Demonstrated

 \rightarrow ready for ILC or ?

SRF Cost Reduction / Risk Reduction through application

LCLS-II SCRF linac basic building block: 9-cell sheet-metal cavity

Figure 1.2-1: A TESLA nine-cell 1.3 GHz superconducting niobium cavity.

- ~ 70 parts electron-beam welded at high vacuum
- ~ 1.25 m² x 3mm thick sheet metal pure niobium and niobium/titanium alloy
 - niobium cost similar to silver

weight ~ 70 lbs

6 flanges

IBIC Monterey Sep 15, 2014 (M. Ross, SLAC)

SCRF vs temperature

Colder is better – to a point

SRF Specifics and Constrains

IBIC Monterey Sep 15, 2014 (M. Ross, SLAC)

IBIC Monterey Sep 15, 2014 (M. Ross, SLAC)

1300 MHz SCRF Cavity *inside its liquid-filled tank*

Cryogen 2-phase pipe

- 9 cell resonator cavity
- Ports:
 - Beam in /out
 - Bring in power
 - Monitor field
 - Extract unwanted frequencies

SRF based electron linacs (CW & pulsed) have track record of successful operations

SRF based electron linacs (CW & pulsed) have track record of successful operations

A Model for Cavity and CM Production and Qualification Process

IBIC Monterey Sep 15, 2014 (M. Ross, SLAC)

Vertical Cavity Test Results at DESY: 1995-2006

CEBAF 12 GeV upgrade 12 GeV cavities: overall performance

Vertical Test; 1500 MHz 7 cell; 10% gradient correction

Jerrerson Lab 12 GeV C100 Cavity Final Emax

Jefferson Lab

Building lot IV 1200 m² (plus 600 m² for services)

Building lot IV 1200 m² (plus 600 m² for services)

XFEL An Accelerator Complex for 17.5 GeV

100 accelerator modules

Some specifications

- Photon energy 0.3 24 keV
- Pulse duration ~ 10 100 fs
- Pulse energy few mJ
- Superconducting linac. 17.5 GeV

2500

2000

10 Hz (27 000 b/s)

800 accelerating cavities 1.3 GHz / 23.6 MV/m

25 RF stations 5.2 MW each

SC Linac (~ 1 km)

EXFEL: 1/20 Scale Project on going, Industrialization being verified !!

1500

IPAC Conference – 18 June 2014 Hans Weise, DESY

3000

SCRF Cavity Production

Gradients in average above specification (almost 300 cavities tested)

- Average usable gradient after delivery (26.8 ± 7.1) MV/m
- 2/3 of cavities can be used w/o further treatment
- 1/3 is getting additional treatm. -> usable grad. increased to (29.6 ± 5.1) MV/m

2014.6: # cavities produced > 300. Usable Gradient: $\sim < 30 > MV/m$

SCRF Cavity Production

Gradients in average above specification (almost 300 cavities tested)

- Average usable gradient after delivery (26.8 ± 7.1) MV/m
- 2/3 of cavities can be used w/o further treatment
- 1/3 is getting additional treatm. -> usable grad. increased to (29.6 ± 5.1) MV/m

2014.6: # cavities produced > 300. Usable Gradient: $\sim < 30 > MV/m$

Gate valve

Eacc (VT)

Fe limit (VT)

CMTB

XM-3 RF Test Results

Will it work ? System Tests - Fermilab

Will it work ? System Tests - Fermilab

Will it work ? System Tests - Fermilab

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)
- 2. LCLS-II
 - Free Electron Laser at SLAC based on ILC / E-XFEL SRF
- 3. SRF for LCLS-II
 - Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
 - Multi-lab partnership
- 4. Implications for ILC

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)

2. LCLS-II

 Free Electron Laser at SLAC – based on ILC / E-XFEL SRF

3. SRF for LCLS-II

- Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
- Multi-lab partnership
- 4. Implications for ILC

Photons for Basic Energy Science (Material, Condensed Matter, Biology, Chemistry...) Cu Linac-4.0 GeV SC Linac

Hard X-Ray Source:

15

1-5 keV w/ new 4 GeV SC linac

Up to 25 keV with LCLS Cu Linac

20

Soft X-Ray Source:

250 eV-1.2 keV w/ 4 GeV linac

Both linacs feed HXR undulator

High Rep Rate

25

LCLS-II Concept Use 1st km of SLAC linac for CW SCRF linac

LCLS Layout in SLAC Linac Tunnel

(only approximately to scale)

LCLS-II Objectives:

- Build 4 GeV (up to 300 micro-Amp) CW superconducting linac based on TESLA / ILC / E-XFEL 1.3 GHz technology
- Develop cavity process for high-Q0 production
- Develop CW cryomodule design and operations scheme for 110 W @ 2K / CM (or better) based on high-Q0 cavity process
- Use industrial capability for 1) dressed-processed-cavity, 2) coupler, and 3) vacuum-vessel/cold-mass production
- Adapt JLab 'CHL-2' (12 GeV Upgrade) Cryoplant for SLAC

10 to 100x lower current than ILC / XFEL

- (LCLS-II 60 micro Amp / EXFEL ILC 6 mA)
- → Matched LCLS-II loaded Q_L ~ 3e8; effective resonance width very narrow; BW few Hz
- Difficult with today's state-of-the-art cavity controls

LCLS-II: $6e6 < Q_L < 1e8$; nominal 4e7 BW 50 Hz ILC / XFEL: $1e6 < Q_L < 1.4e7$

<u>Microphonics / cavity resonance control → key R&D</u> topics for low current CW linacs

Also useful for ILC

LCLS-II Linac

Closely based on the *European XFEL / ILC / TESLA* Design Under development ~ 20 years with <u>> 1000 cavities</u> to be made and tested (inc. 800 for E-XFEL – completed 2016)

- Thirty-five 1.3 GHz 8-cavity cryomodules
- Two 3.9 GHz 8-cavity cryomodules
- Four cold segments (L0, L1, L2 and L3) which are separated by warm beamline sections.
- 280 1.3 GHz cavities
- 16 3.9 GHz cavities

IBIC Monterey Sep 15, 2014 (M. Ross, SLAC)

Re-purposing the SLAC Tunnel

SLAC Linac Tunnel: 11 wide x 10 feet high

It will be a tight fit! **Existing Copper Linac** Щ

Re-purposing the SLAC Tunnel

SLAC Linac Tunnel: 11 wide x 10 feet high

It will be a tight fit!

LCLS-II Cryomodule in 3-D

LCLSII-2.5-FR-0053

IBIC Monterey Sep 15, 2014 (M. Ross, SLAC)

CM, Feed Cap and Bypass and Vertical Transferline

Cryomodule from the side:

12.6 m long; 1 m diameter

- (Similar to LHC dipole)
- 8 cavities w / superconducting quad magnet

Future view along linac – after LCLS-II SCRF linac installation:

IBIC Monterey Sep 15, 2014 (M. Ross, SLAC)

Project Collaboration: SLAC couldn't do this without...

Summary Schedule

	FY202	13	FY2014	ļ	FY2015	;	FY	2016		FY202	17	F١	/2018		FY20	19		FY2020	FY2021
Critical Decisions			CD-1 Approve Selection and Cost Range		CD-2 Approve Performance Baseline/ CD-3 Start of contruction	F						LCLS Do	wntime						CD-4 Approve Project Completion Sept 21
Design	Accele Photoi	Con- rator Sy n Syster	ceptual ystems							Cı	ryoplan	t Engr Com	p						
			Start Crvc	modul	e Prototypes	-	Start CM I	Productio	n		+-	Crvomoo	lules prod co	mp	Crvom	odule	es ins	tall comp	
Prototype		Acce	elerator System	ms				Procur	ement,	Fabric	ation,	Installati	on & Test					Early Project Complet	ion
Construction			Awa	rd Niol	oium Awa	ard Cry	yoplant			Cryopla	nt Fab	Comp	Cryoplant	Instal	l Comp				
Fabrication &				Phot	on Systems			Procur	ement,	Fabric	ation,	Installati	on & Test						
Installation																_			
																	.inac	Commissioning comp	
Commissioning										C	ommis	sioning						Schedule	Float
Commissioning											_	Cry	oplant Comn	nissio	ning Coi	mp			
Environmental, Safety & Health		EA P	reparation	EA F	ONSI PHAR Su	bmitt	ted to DOI	E											
Legend	(A) Actual		Completed		Planned	Dat	a Date	Le	vel 1 N	lilestor	ie	Early Fi	nish Milest	tone	s	chec	lule	Contingency Criti	cal Path

Summary Schedule

	FY2013	FY2014	FY2015	FY2016	FY2017	FY2018	FY2019	FY2020	FY2021
Critical Decisions		CD-1 Approve Selection and Cost Range	CD-2 Approve Performance Baseline/ CD-3 Start of contruction			LCLS Downtime			CD-4 Approve Project Completion Sept 21
Design	Co Accelerator Photon Syste	nceptual Systems			Cryoplan	t Engr Comp			
Prototype Construction Fabrication &	Act	Start Cryomodi celerator Systems Award Ni Ph	obium Award Cry oton Systems	Start CM Production Procure oplant Procure	ment, Fabrication, Cryoplant Fab ment, Fabrication,	Cryomodules prod con Installation & Test Comp Cryoplant Installation & Test	mp Cryomodules ir	stall comp Early Project Complet	ion
Installation	LC	CLS-II: or	ne CM ev	ery 3 we	eks (agg	regate pr	oduction	of two la	bs)
		C: one C	M every v	week (US	S)				
Commissioning						Cryoplant Comn	nissioning Comp	-	
Environmental, Safety & Health	EA	Preparation EA	FONSI PHAR Submitt	red to DOE					
Legend	(A) Actual	Completed	Planned Dat	a Date Lev	el 1 Milestone	Early Finish Milest	one Schedul	e Contingency Criti	cal Path

Summary Schedule

	FY2013	FY2014	FY2015	FY2016	FY2017	FY2018	FY2019	FY2020	FY2021
Critical Decisions		CD-1 Approve Selection and Cost Range	CD-2 Approve Performance Baseline/ CD-3 Start of contruction			LCLS Downtime			CD-4 Approve Project Completion Sept 21
Design	Accelerator Photon Syst	nceptual Systems ems			Cryoplan	t Engr Comp			
Prototype Construction Fabrication & Installation	Ac	Standaryomod celerator Systems Awarom Pho	ule Prototypes Award Cry oton Systems	Start CM Production Procurer oplant Procurer	nent, Fabrication, Cryoplant Fabrication,	Cryomodules prod cor Installation & Test Comp Cryoplant I	np Cryomodules in nstall Comp	stall comp Early Project Compet	ion
		C: one C	ne CM ev M every v	ery 3 wee week (US	eks (agg S)	regate pro	oduction	of two la	bs)
Commissioning						Cryoplant Comm	issioning Comp		
Environmental, Safety & Health	EA	Preparation EA	FONSI PHAR Submitt	ed to DOE					
Legend	(A) Actual	Completed	Planned Data	a Date Leve	l 1 Milestone	Early Finish Milest	one Schedule	e Contingency Criti	cal Path

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)
- 2. LCLS-II
 - Free Electron Laser at SLAC based on ILC / E-XFEL SRF
- 3. SRF for LCLS-II
 - Historic shift very high performance resonators with Q0 ~ 1e11
 - Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
 - Three-lab (Fermilab, JLab and Cornell) development and demonstration
 - Multi-lab partnership

4. Implications for ILC

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)
- 2. LCLS-II
 - Free Electron Laser at SLAC based on ILC / E-XFEL SRF

3. SRF for LCLS-II

- Historic shift very high performance resonators with Q0 ~ 1e11
- Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
- Three-lab (Fermilab, JLab and Cornell) development and demonstration
- Multi-lab partnership
- 4. Implications for ILC

Motivation for High Q₀ R&D

- High Q₀ is a surrogate for low rf losses = low dynamic cryo heat load
- New Nb surface doping phenomenon with significantly lowered R_{s-BCS} and R_{s-residual} discovered 2012-2013
- Our mission: expedite development for use in LCLS-II

Fermilab-developed 'gas-doping' process →

Fermilab has developed a cavity processing recipe that results in *high quality factors (>3E10)* at operating gradients between 10 and 20 MV/m.

In 2014 Fermilab led a Q0 program in collaboration with Cornell and JLab.

<u>The primary goal is to develop a reliable and industrially</u> <u>compatible processing recipe to achieve an average Q0 of 2.7E10</u> <u>at 16 MV/m in a practical cryomodule; minimum 1.5E10.</u>

To reach this goal, the collaborating institutions processed and tested single-cell and 9-cell 1.3 GHz cavities in a successive optimization cycle.

<u>The deliverable is industrial capability and cost-effective</u> production yield.

• <u>Supporting the cryoplant design choices</u>

Motivation for High Q₀ R&D

Americas ILC Linac Cost Versus Cavity Gradient and Qo

IBIC Monterey Sep 15, 2014 (M. Ross, SLAC)

Q₀ picture still looks good for LCLS-II, but new discipline will be required

IBIC Monterey Sep 15, 2014 (M. Ross, SLAC)

FNAL IB4 Vacuum Oven

LCLS-II High Q0 R&D Program – Preliminary Nine-Cell VT Results

High Q0 testing done at 3 labs: Fermilab (from 2012); JLab and Cornell (2014)

High Q0 Program 9 cell results								
	Q0 E_acc (MV/m)							
Average	3.5E+10 19.0							
Yield	100% (avg. 2.7e10) 47% (18 MV/m) 88%(16 MV/m							
Number of cavities tested; some multi-pass								
17 (3 Cornell; 5 Jlab; 9 Fermilab)								

Initial results meet LCLS-II VTS High Q0 criteria: 30% margin

Field Emission Onset

TTC 14

Page 67

Thomas Jefferson National Accelerator Facility

Effect of cool-down speed-through-transition

"Dressed" cavity results under different cooling regimes.

 Thermogradient-generated fields have no impact on Q in VT, slow cooling through T_c has dramatic effect.

> [fast ~1.8K/min; slow ~0.3K/min through 9.2K]

• Precautions will have to be taken in CM to obtain fast cooling through transition.

LCLSII Cavity Tests in the Cornell one-cavity Horizontal-Test-Cryomodule (HTC)

 Small modifications were needed to host a 9-cell cavity (changes to 2phase line, cavity support).

Fermilab Horizontal Test Cryostat With Three Axis Magnetic Cancellation

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)
- 2. LCLS-II
 - Free Electron Laser at SLAC based on ILC / E-XFEL SRF
- 3. SRF for LCLS-II
 - Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
 - Multi-lab partnership
- 4. Implications for ILC

Outline

- 1. Industrialization of 1.3 GHz SRF technology
 - 1990's to present
 - TESLA, E-XFEL, and ILC (also CEBAF 12 GeV)
- 2. LCLS-II
 - Free Electron Laser at SLAC based on ILC / E-XFEL SRF
- 3. SRF for LCLS-II
 - Low cryogenic-loss cavities: 'N₂ doping' process developed by Fermilab
 - Multi-lab partnership

4. Implications for ILC
For ILC: Summary

Cavity / Cryomodule:

- Cost Validation : <u>few percent scale</u>
- Cost Reduction
 - Applied production v/v continued R&D
 - (tooling, infrastructure, and experience)
 - From C100 to EXFEL: factor 2 cavity cost reduction
 - (Hasan's target)
- Technical Risk Mitigation
 - <u>Demonstrate construction and performance</u> of ILC-type cryomodules for science in the US

For US, the work on ILC and now on LCLS II has brought together SRF programs in a way that maximizes collaboration, efficient sharing of IP, and facilities giving the most "bang for the buck".