

Design and Initial Commissioning of Beam Diagnostics for the KEK Compact ERL

<u>R. Takai</u>, T. Obina, H. Sagehashi, Y. Tanimoto, T. Honda, T. Nogami, M. Tobiyama (KEK)

IBIC2014, September 14-18, 2014, @Monterey

Table of Contents

□ Introduction to the KEK Compact ERL (cERL)

Standard Beam Monitors for the cERL

- Beam Position Monitor (BPM)
- Screen Monitor (SCM)
- Beam Loss Monitor (BLM)
- Summary and Future Plan

Acknowledgment

The Compact ERL (cERL) at KEK

Purpose of the cERL

- to demonstrate the key technologies for the ERL-based light source
- Construction was completed in Dec. 2013.

Recirculation Loop

Main Dump

1st Arc

Main Linac

Merger

Injector Linac

Photocathode DC gun

Parameter	Initial Goal	
Beam energy	35 MeV	
Injector energy	5 MeV	
Beam current	10 mA	
Normalized emittance	< 1 mm·mrad	
Bunch length	1 - 3 ps	
Accelerating Gradient	15 MV/m	
RF frequency	1.3 GHz	

(c)Rey.Hori/KEK

2nd Arc

Commissioning Result with Low-current Beams

Beam energy (E)

Injector: 2.9 MeV

Dump FC

beam current

MS14

Recirculating loop: 19.9 MeV

Parameters

Dump line

CT

MS31 (dump line)

- Gun voltage: 390 kV Buncher: V_c = 30.7 kV
- Injector cavities: *E*_{acc} = (3.2, 3.3, 3.1) MV/m
- Main-Linac cavities: Vc = (8.58, 8.59) MV

MS11

Beam pulses (macropulse)

MS26

MS27

O BPM

Beam Monitors for the cERL

Monitor Type	Objective	#
BPM (Stripline/Button)	Position, Charge	45
SCM (Ce:YAG/OTR)	Position, Profile	30
BLM (Fiber&PMT)	Loss	4
СТ	Charge	4
DCCT	Current	1
Movable FC	Charge	3

✓ CsI-scintillator-based BLMs, described later, are not listed here.

✓ A slit scanner and a deflecting cavity are installed along the diagnostic line.

Design of the BPM Duct

- Inner diameter: 50 mm
- Electrode length: 28.8 mm (to maximize sensitivity to 2.6 GHz)
- Electrode width: Opening angle 20°
- > Characteristic impedance: 50 Ω
- Slass-sealed feedthrough (Kyocera, BHA glass, $\varepsilon_r = 5.0$)

- Gapless and stepless flanges
- Boss for precise alignment
- Longitudinal loss factor was evaluated by using GdfidL.
- For a 1-mm bunch-length beam, Loss factor: 59.1 mV/pC Power loss: 4.6 mW @10 mA

Detection Circuit & Digitizer

SL1000 with insulating input modules (Yokogawa, 100 MS/s, 12 bit)

- > Log detection circuit with a broad dynamic range
- Bandwidth: 10 MHz
- Center frequency: 1.3 GHz
 - (due to the cut-off frequency of octagonal duct)
- Log-linearly response to the input of -90~-30 dBm
- Rise time for a pulse input: ~200 ns
- Commercial high-speed data acquisition unit
- Wide analog bandwidth, 12-bit resolution
- It can be utilized for other waveform analyses. (e.g., beam current monitoring with a Faraday cup)

BPM Calibration

- Beam position was changed stepwise by using a upstream steering magnet.
- Red: beam positions measured by the BPM Blue: nominal positions obtained using a SCM
- > Resolution (including beam position jitter): 150 μ m

- BPM mapping results
- Calculated using CST PS
- Sensitivity curve obtained by fitting the 5th degree polynomial to this map was used.

2-color beams measurement

- We devised a simple method to detect the positions of 2-color beams using a BPM.
- Post-circulation beam signals superimpose on pre-circulation beam signals with a constant delay corresponding to the circulation time. (~300 ns for the cERL)
- So, the head and tail parts of the detected signal contain only pre- and post-circulation beam signals, respectively.
- Ideally, there are no signals between these two parts because the 2.6 GHz signals is removed by the BPF in the detection circuit.
- Actually, finite signals appear !
- Reason: the phase difference of 180° shifts in proportion to the distance from the main linac because of the beam energy difference.
- In other words, this part can be used as a beam phase monitor.

If a negligible blank area with no beam is added periodically, this method can be applied to the CW beams!

Design of the SCM Duct

- Inner diameter: 50 mm, Screen's aperture: 28 mm
- Two-stage screen holder allows us to use two different screens according to the beam energy and intensity.
- Ce:YAG scintillator
 - Thickness: 100 μm
 - Beam incidence surface is coated with a 3-nm-thick aluminum. (to avoid damage due to charge-up)

- Alminum-coated silicon wafer (OTR radiator)
 - Coating / Wafer thickness: 40 nm / 70 μm (to flatten the radiation surface)
- These screens are concealed behind a cylindrical RF shield when not in use.
- Only with a physical contact through high-precision fitting
- Such an internal structure was designed on the basis of that employed at JLab and BNL.

Imaging Optics & CCD Camera

- The light is extracted in the direction perpendicular to the beam axis and then relayed via an optical window and a flat mirror to a CCD camera.
- GigE camera (AVT, 659x493, 12 bit, 90 fps)

+ Low-distortion lens with a diaphragm

Flat mirror is useful for adjusting the optical axis and protecting the camera from radiation-induced damage.

RF-shield for Octagonal Duct (Arc section)

SCM Calibration

Focused image of a calibration pattern obtained using the imaging optics with a magnification that is actually used in the commissioning

Horizontal profile on the dashed line and its position differential

The spatial resolution of the YAG screen was estimated by accounting for the depth of field and multiple scattering of electrons in the crystal in addition to the edge width of this image.

Spatial resolution

- YAG screen: 62 μm
- OTR screen: ~ 40 μm
- A difference between the two resolutions are caused by multiple scattering of electrons in the Ce:YAG crystal.

- Normalized emittance was measured by employing the Q-scan method at four sections (B, C, D, E).
- Result for low bunch charge: 0.14 mm·mrad
- This is almost the same as the design value.
- Emittances measured at five sections were consistent with each other.
- For high bunch charge (7.7 pC/bunch), emittane is still larger than the target value, but it is decreacing steadily because of elaborate optics matching using SCMs.

Fast Beam Loss Monitors #1

- Optical Fibers with PMTs
 - Glass fiber: Pure Silica (Core diameter: 600 μm)
 - PMT: Hamamatsu, H10721-110

Four sets of fiber loss monitors cover the entire cERL circumference.

We can estimate the beam-loss point along the circumference by analyzing the time structure of the output signal.

Fast Beam Loss Monitors #2

- Csl Scintillators with Large-cathode PMTs (under development)
 - ✓ Scintillator: Pure CsI crystal (10 mm×10 mm×25 mm)
 - PMT: Hamamatsu, H10721-110

Before optics matching

Photocathod

DC gun

Injector SC lina

Main SC lina

After optics matching

Summary and Future Plan

- For the main BPMs, we adopted the stripline type, the time response of which is improved by using a glass-sealed feedthrough.
- The SCMs are equipped with two types of screens and an RF shield for wake-field suppression.
- Optical fibers with PMTs, covering the entire cERL circumference, are used as the BLM. CsI scintillators with large-cathode PMTs are also prepared for detecting local beam loss.
- These standard monitors have greatly contributed to the efficient cERL commissioning.
- From the next year (Jan. 2015), we are planning to start the commissioning toward the experimental utilization of pulsed X-rays generated by LCS.
- By that time, we plan to add two button-type BPMs and a largeaperture SCM. In addition, we are also preparing for bunch-length measurement using CTR and a Michelson interferometer to confirm the effect of bunch compression with the first arc.

Acknowledgment

We would like to thank all members of the cERL commissioning team for their collaborative efforts during this work.

Thank you for your kind attention !

cERL Development Team

(C) High Energy Accelerator Research Organization (KEK)

S. Adachi, M. Adachi, M. Akemoto, D. Arakawa, S. Asaoka, K. Enami,K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, X. Jin, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, O.A. Konstantinova, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozak i, F. Qiu, H. Sakai, S. Sakanaka, S. Sasaki, H. Sagehashi,K. Satoh, M. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Takahashi,R. Takai, H. Takaki, T. Takenaka, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida

R. Hajima, S. Matsuba, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma

Hiroshima University

÷

M. Kuriki, Y. Seimiya

Nagoya University

Y. Takeda, M. Kuwahara, T. Ujihara, M. Okumi

The Graduate University for Advanced Studies (Sokendai)

E. Cenni (present address: Kyoto University)

UVSOR, Institute for Molecular Science

M. Katoh

- National Institute of Advanced Industrial Science and Technology (AIST)
- D. Yoshitomi, K. Torizuka
- JASRI/SPring-8
 - H. Hanaki

H. Kurisu

CERN A. Valloni

Backup Slides

2-color beams measurement (for CW beams)

- Simple method to detect the positions of 2-color beams using a BPM can be applied to the CW beams in a negligible blank area with no beams is added periodically.
- In this case, the order of detected signals of pre- and post-circulation beams is interchanged with each other compared to the case of macro-pulse beams.

Fast Beam Loss Monitors #2

Csl Scintillators with large-cathode PMTs (under development)

Control Panel of the GigE Camera for SCM

The cERL control system is constructed with EPICS and CSS.