

Progress on The Beam Energy Monitor for the Spiral2 Accelerator

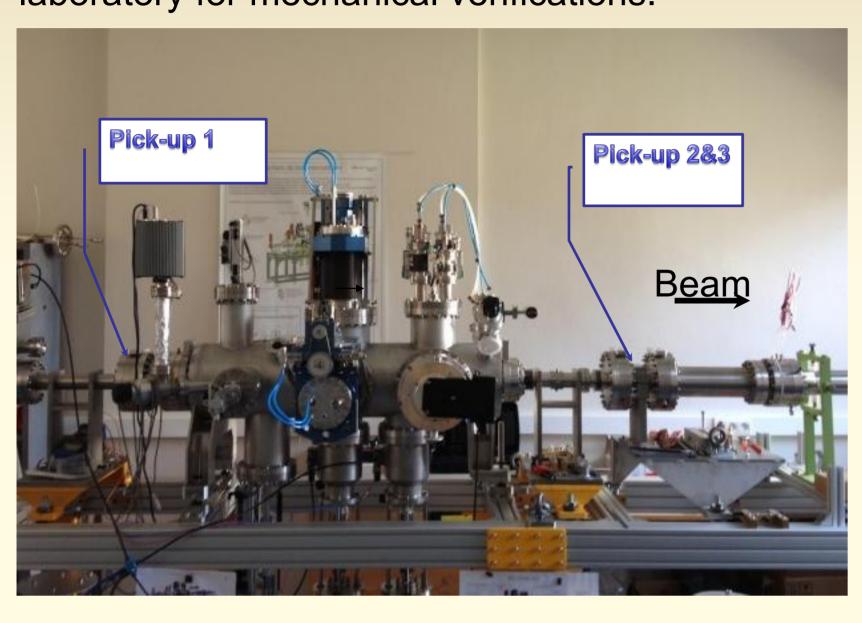
W. Le Coz, C. Jamet, G. Ledu, S. Loret, C. Potier de Courcy, D. Touchard GANIL, Caen, France

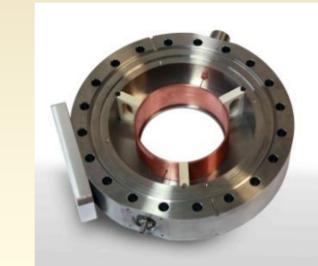
Y. Lussignol IRFU, Saclay, France

email:lecoz@ganil.fr

ABSTRACT

The first part of the SPIRAL2 project entered last year in the end of the construction phase at GANIL in France. The facility will be composed of an ion source, a deuteron/proton source, a RFQ and a superconducting linear accelerator. The driver is planned to accelerate high intensities, 40 MeV deuterons up to 5 mA and heavy ions up to 1 mA.


A monitoring system was built to measure the beam energy on the BTI line (Bench of Intermediate Test) at the exit of the RFQ. As part of the MEBT commissioning, the beam energy will be measured on the BTI with an Epics monitoring application.


At the exit of the LINAC in the HEBT, another system should measure and control the beam energy. The control consists in ensuring that the beam energy stays under a limit by taking account of the measurement uncertainty. The energy is measured by a method of time of flight; the signal is captured by non-intercepting capacitive pick-ups.

This paper describes the BTI monitor interface and presents the system evolution following the design review of the HEBT monitor.

BEAM ENERGY MEASUREMENTS

The energy monitor is composed by three electrodes installed along the beam line, the energy is calculated by a time of flight method (TOF). In 2014, before the final installation, the BTI was assembled at the IPHC laboratory for mechanical verifications.

Pick-up1

Pick-up2 and 3.

The first unit includes the Pick-up1 and the second unit is composed by the Pick-up2 and 3 .The pick-up3 is designed to determine the number of bunches between the two first pick-ups. The length between the second and the third pick-up is calculated to be smaller than the distance between two bunches.

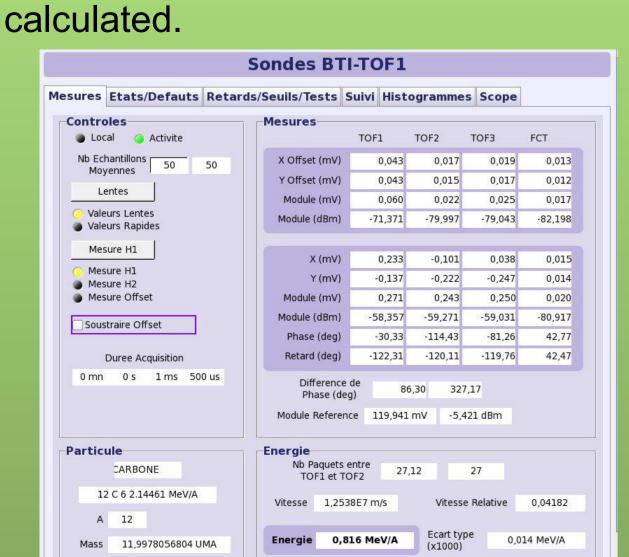
The HEBT <u>required performances</u> are the following:

- Intensity range: from 10 µA to 5 mA
- Energy range: from 2 MeV/A to 33 MeV/A
- Response time: 1 s
- Required accuracy:
 - +/-1 per mille for the beam tuning
 - +/-1 per cent for the beam control

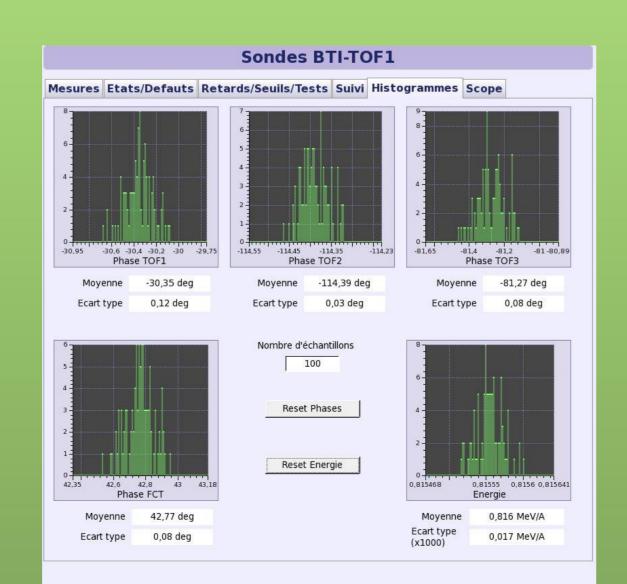
BTI MONITOR INTERFACE

The graphical interface of the BTI device is composed of a dedicated CSS/BOY project associated to EPICS TOFApp module and iocTOF IOCs.

The module application contains the EPICS interface with the measurement system of the energy by time of flight. Concerning the final control system for the SPIRAL2 facility, the application is accommodated on an IOC VME VxWorks. For tests in laboratory, the application is running under IOC Linux.

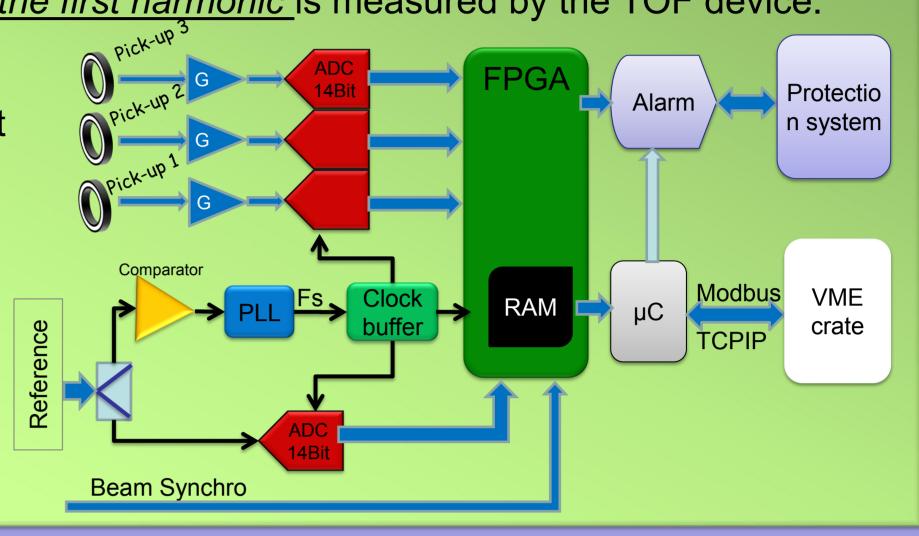

The <u>Modbus-TCP protocol</u> is used for the communication between the EPICS IOC and the TOF measurement system connected together via Ethernet. The Modbus operations of reading and writing are done with EPICS Modbus driver developed by the University of Chicago.

An electronic test device allows injecting a test signal directly on each probe. The test commands are sent and read by a VME ADAS ICV196 board.


This GUI allows us to adjust the sample size in the average calculations. From the x and y coordinates of the measured vector, the phase and the amplitude of the signal on each probe are deduced. The application gives two information which allow us to calculate the ion velocity: the phase and the number of bunches between probes 1 and 2. Then knowing the mass of the accelerated ion, the beam energy and its standard deviation can be

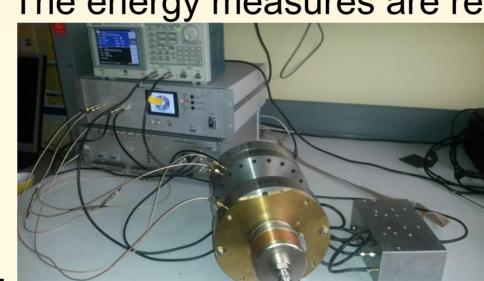
The delay compensation between the three chains is done by injecting a test signal. The interface is used for calibration operation like offset deduction.

The graphical interface is composed of few tabs. A histogram tab allows seeing the dispersion and the distribution of measurements, and its evolutions.


Statistic measurements

ELECTRONIC DESCRIPTION

The phase measurement of the TOF is based on an electronic system which realizes the *lock-in amplifier* function. The signals come from three pickup electrodes. The phase of *the first harmonic* is measured by the TOF device.


The TOF electronic system:

- ADCs card with a clock part
- •FPGA board
- Microcontroller board
- High Frequency Amplifier
- Alarm board

SINGLE PULSE TEST BENCH

A single bunch selector, installed in the MEBT, will reduce the bunch repetition rates by a factor of 100 to 10000. This working mode was tested in laboratory. The beam is simulated by injecting a signal in a coaxial line at 88 MHz. The three signals which come from the probes are measured by the TOF device. The energy measures are realized after the offset and delay compensation.

Test Bench Input signals

To simulate the single bunch selector, a generator with two outputs at the same frequency is used. The first output corresponds to the RF frequency (green curve) and the second (yellow curve) to the pulse.

As the energy is calculated from the average values of the signal phases, the repetition rates decrease the average module and increase the phase uncertainty. The beam intensity average has to be higher than 10 µA that means an intensity peak higher than 1 mA for a bunch repetition rate of 100.

ALARM CONTROL SYSTEM

The energy measurement is non interceptive, in order to control continuously beam parameters and beam losses. As the energy control is part of the safety functions, Failure Modes and Effects Analysis (FMEA) and the measurement uncertainty are required on this control device.

Alarm System

The TOF alarm management system is based on a microcontroller, which calculates the beam velocity. This velocity is compared to a threshold of the Enlarged Protection System (EPS) and to thresholds of the Thermal Protection System (TPS).

The EPS threshold is defined following the operation schedule. An alarm is sent by the TOF device to the EPS when the velocity exceeds this threshold. TPS thresholds are calculated from the beam velocity measured and memorized during the beam tuning at the LINAC exit. A fork of few percents in plus and in minus gives a maximum and minimum thresholds. When the velocity exceeds the maximum threshold or is less than the minimum, a *cut-off request* is sent to the TPS.

Threshold guarantee

For each new beam, the thresholds have to be sent to the HEBT TOF device. Following the FMEA, a robust transfer protocol was developed to guarantee that the threshold values used by the energy control device are correct.

The thresholds for beam loss detection have to be recalculated for each beam, due to the specificity of SPIRAL2.

CONCLUSION

Currently, two TOF systems are realized to be used during the MEBT commissioning in the BTI (Bench of Intermediate Test). The monitor interface is operational and will allow us to qualify the beam at the RFQ exit.

The TOF electronic digitalization, which works with under sampling, can measure beam phases in the single bunch mode.

Following the FMEA and the design review in 2014, the HEBT electronic device is under development. The new design is an upgrade of the BTI device.