

High Position Resolution and High Dynamic Range Stripline Beam Position Monitor (BPM) Readout System for the KEKB Injector Linac Towards the SuperKEKB

R. Ichimiya[#], T. Suwada, M. Satoh, F. Miyahara, K. Furukawa (KEK)

Specifications

Block diagram

BPF circuit

BPF circuit

BPF circuit

- Position resolution <10 μm. Same order accuracy.
- High dynamic range (0.1 nC 10 nC), large precise aperture (\pm 5mm with σ < 10 μ m).
- Under-sampling with Narrow Band Pass Filters (BPFs)
 - 16-bit 250 MSa/s ADC (AD9467-250).
 - F_c=180 MHz, Bw=22 MHz (Bessel).
 - Measures two bunches with 96 ns interval.

(e-mail: ryo@post.kek.jp)

- Equipped Calibration tone generator to compensate position drift due to channel gain drift.
 - > 40 dBm output.
 - Between beam injection (20 ms interval), calibration tone is output to the BPM electrodes. Resolution /Linearity

FI/FO

IRQ*

MAIN FPG/

Design non-linearity is within ±0.02 dB.

We measured amplifier gain drift of the BPF circuits in a thermostatic chamber (25±0.1 °C) for 286 hours (11.9 days).

- MGA-30689 (Avago) shows largest gain drift (1.6% (0.14 dB)/11.9 days).
 - pHEMT: FET structure.
- ADL5536 (Analog Devices) shows smallest gain drift (0.6% (0.05 dB)/11.9 days).
 - HBT: Bipolar structure.
- HBT devices seem to have better power drift characteristics.
- We employed ADL5536.

3–BPM resolution tests

- Instead of beam signal, 180 MHz CW signal is equally divided into four channel (to reduce source jitter/noise).
- 96 ns (same with beam gate) Hanning window is applied to extract a pseudobeam signal.
- Upper plot shows position resolution and lower plot shows linearity.
- Requires >14 dB dynamic range to ensure ± 5mm precise aperture.
 - Keeps 24 dB in dynamic range that meets both
 - position resolution <10 μm,
 - linearity within ±0.2%(=0.02 dB).
 - We can set an operation point with about 2 μm or less.

BPM >	Tubular Butterworth f0: 180MHz BW-3dB: 60MHz (Anti-Aliasing) (Anti-Aliasing) Electrical attenuate	(Shaping) 0-31.5dB	D
	Head Amp V2	BPF Amp V2	
Latter amplifier is the critical device that limits overall linearity. Hence, we tested below three devices.			

calibration tone generator.)

Reconstructed position Measurement position (µm)

Input power (a.u.)

- At KEK Linac, beam from 3T thermionic gun (0.8 nC, 1 ns bunched) is
- Adjacent three BPM output are readout by these readout systems: 3,500 events with 12.5 Hz have been readout.
- During the experiment, steering magnet current was changed in each 500 events.
- With a multiple regression analysis, 3rd BPM positions were estimated, and we obtain $\sigma = 3 \mu m$ from residual error distributions.

Summary and future plan

- We have developed a BPM readout system with high position resolution (σ < 10 µm) and a gain calibration system.
- 3-BPM resolution test has been done with KEK Linac beam (0.8 nC) and proved that it meets all requirements.
- We plan to fabricate total 100 units within this fiscal year (till March 2015) and install at 2015 summer shutdown.