Paper | Title | Page |
---|---|---|
MOPF05 | Instrumentation for the Proposed Low Energy RHIC Electron Cooling Project with Energy Recovery | 49 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy There is a strong interest in running RHIC at low ion beam energies of 7.7-20 GeV/nucleon [1]; this is much lower than the typical operations with 100 GeV/nucleon. The primary motivation for this effort is to explore the existence and location of the critical point on the QCD phase diagram. Electron cooling can increase the average integrated luminosity and increase the length of the stored lifetime. A cooling system is being designed that will provide a 30 – 50 mA electron beam with adequate quality and an energy range of 1.6 – 5 MeV. The cooling facility is planned to be inside the RHIC tunnel. The injector will include a 704 MHz SRF gun, a 704 MHz 5-cell SRF cavity followed by a normal conducting 2.1 GHz cavity. Electrons from the injector will be transported to the Yellow RHIC ring to allow electron-ion co-propagation for ~20 m, then a 180 degree U-turn electron transport so the same electron beam can similarly cool the Blue ion beam. After the cooling process with electron beam energies of 1.6 to 2 MeV, the electrons will be transported directly to a dump. When cooling with higher energy electrons between 2 and 5 MeV, after the cooling process, they will be routed through the acceleration cavity again to allow energy recovery and less power deposited in the dump. Special consideration is given to ensure overlap of electron and ion beams in the cooling section and achieving the requirements needed for cooling. The instrumentation systems described will include current transformers, beam position monitors, profile monitors, an emittance slit station, recombination and beam loss monitors. |
||
Export • | reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml) | |
MOPD01 | RHIC p-Carbon Polarimeter Target Lifetime Issue | 124 |
|
||
Funding: Work performed under contract No. DE-AC02-98CH1-886 with the auspices of the DOE of United States RHIC polarized proton operation requires fast and reliable proton polarimeter for polarization monitoring during stores. Polarimeters based on p-Carbon elastic scattering in the Coulomb Nuclear Interference(CNI) region has been used. Two polarimeters are installed in each of the two collider rings and they are capable to provide important polarization profile information. The polarimeter also provides valuable information for polarization loss on the energy ramp. As the intensity increases over years, the carbon target lifetime is getting shorter and target replacement during operation is necessary. Simulations and experiment tests have been done to address the target lifetime issue. This paper summarizes the recent operation and the target test results. |
||
![]() |
Poster MOPD01 [10.776 MB] | |
Export • | reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml) | |
MOPD02 | The Electron Backscattering Detector (eBSD), a New Tool for the Precise Mutual Alignment of the Electron and Ion Beams in Electron Lenses | 129 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the U.S. Department of Energy The Relativistic Heavy Ion Collider (RHIC) electron lenses, being commissioned to attain higher polarized proton-proton luminosities by partially compensating the beam-beam effect, require good alignment of the electron and proton beams. These beams propagating in opposite directions in a 5T solenoid have a typical rms width of 300 microns and need to overlap each other over an interaction length of about 2 m with deviations of less than ~50 microns. A new beam diagnostic tool to achieve and maintain this alignment is based on detecting electrons that are backscattered in close encounters with protons. Maximizing the intensity of these electrons ensures optimum beam overlap. The successful commissioning of these devices using 100 GeV/amu gold beams is described. Future developments are discussed that will further improve the sensitivity to small angular deviations. |
||
Export • | reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml) | |
MOPD03 | Performance and Upgrade of the Fast Beam Condition Monitor at CMS | 134 |
|
||
The Fast Beam Condition Monitor BCM1F is a diamond based particle detector inside CMS. It is based on 8 single crystal CVD diamond sensors on both ends of the interaction point and is used for beam background and luminosity measurements. The system has been operated up to an integrated luminosity of 30fb-1, corresponding to a particle fluence of 8.78·1013 cm-2 (24GeV proton equivalent). To maintain the performance at a bunch spacing of 25ns and at the enhanced luminosity after the LHC Long Shutdown LS1, an upgrade of BCM1F is necessary. The upgraded system features 24 single crystal diamond sensors with a two pad metallization, a very fast front-end ASIC built with 130nm CMOS technology and new back-end electronics. A prototype of the upgraded BCM1F components were studied in the 5GeV electron beam at DESY. Measurements were done on the signal shape as function of time, the collection efficiency as a function of voltage and position of the impact point on the sensor surface. The preliminary results of this testbeam will be presented. In addition, the status of the new upgraded BCM1F will be given. | ||
Export • | reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml) | |
MOPD04 | Synchronisation of the LHC Betatron Coupling and Phase Advance Measurement System | 139 |
|
||
The new LHC Diode ORbit and OScillation (DOROS) system will provide beam position readings with sub-micrometre resolution and at the same time will be able to perform measurements of local betatron coupling and beam phase advance with micrometre beam excitation. The oscillation sub-system employs gain-controlled RF amplifiers, shared with the orbit system, and followed by dedicated diode detectors to demodulate the beam oscillation signals into the kHz frequency range, subsequently digitized by multi-channel 24-bit ADCs. The digital signals are processed in each front-end with an FPGA and the results of reduced throughput are sent using an Ethernet protocol to a common concentrator, together with the orbit data. The phase advance calculation between multiple Beam Position Monitors (BPMs) requires that all DOROS front-ends have a common phase reference. This paper presents methods used to generate such a reference and to maintain a stable synchronous sampling on all system front-ends. The performance of the DOROS prototype synchronisation is presented based upon laboratory measurements. | ||
Export • | reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml) | |
TUIXB1 | The Beam Instrumentation and Diagnostic Challenges for LHC Operation at High Energy | 216 |
|
||
This contribution will present the role of beam instrumentation and diagnostics in facing the challenges posed by running the LHC close to its design energy of 7TeV. Machine protection will be ever more critical, with the quench level of the magnets significantly reduced, so relying heavily on the beam loss system and abort gap monitor interlocks on the beam position and fast beam current change system. Non-invasive profile monitoring also becomes more of a challenge, with standard synchrotron light imaging limited by diffraction and rest gas ionisation monitoring dominated by space charge effects. There is also a requirement to better understand beam instabilities, of which several were observed during Run I, leading to the need for synchronised bunch-by-bunch, turn-by-turn information from many distributed instrumentation systems. All of these challenges will be discussed along with the strategies adopted to overcome them. | ||
![]() |
Slides TUIXB1 [7.329 MB] | |
Export • | reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml) | |
TUCYB2 | Pulsed Green Laser Wire System for Effective Inverse Compton Scattering | 254 |
|
||
Funding: This work has been supported by the Quantum Beam Technology Program of the Japanese Ministry of Education, Culture, Sports, Science,and Technology(MEXT). Laser-Compton scattering has become an important technique for beam diagnostics of the latest accelerators. In order to develop technologies for low emittance beams, an Accelerator Test facility (ATF) was built at KEK. It consists of an electron linac, a damping ring in which beam emittance is reduced, and an extraction line. For emittance measurement we are developing a new type of beam profile monitor which works on the principle of inverse Compton scattering between electron and laser light. In order to achieve effective collision of photon and electron, a pulsed and very thin size laser is required. Laser wire is one technique of measuring a small beam size. With green lasers, which are converted to second harmonics from IR pulsed laser, minimum beam waist is half of the beam waist obtained using infrared (IR) laser oscillator. Therefore, it is possible to obtain beam waist less than 5 μm using green laser pulse, which is required for effective photon-electron collision. First, pulsed IR seed laser is amplified with 1.5 meter long PCF based amplifier system. This pulsed IR laser is converted to second harmonics with a non-linear crystal. Pulsed green laser is injected inside four mirror optical cavity to obtain very small beam waist at interaction point (IP). Using a pulsed compact laser wire, we can measure 10 um electron beams in vertical directions. We report the development of the pulsed green laser and parameters of compact four mirror optical cavity for effective inverse Compton scattering. |
||
![]() |
Slides TUCYB2 [2.632 MB] | |
Export • | reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml) | |