Author: Schwickert, M.
Paper Title Page
TUPD06 CUPID: New System for Scintillating Screen Based Diagnostics 417
 
  • B. Walasek-Höhne, C. Andre, A. Bräuning-Demian, H. Bräuning, R. Haseitl, T. Hoffmann, R. Lonsing, A. Reiter, C. Schmidt, M. Schwickert
    GSI, Darmstadt, Germany
 
  The Facility for Antiproton and Ion Research (FAIR) poses new challenges for standard beam instrumentation like precise beam imaging over a wide range of beam parameters, radiation hardness, etc. A new, fully FAIR-conformal system for standard scintillating screen based beam diagnostics was developed at GSI. To cover a wide range of foreseen applications, a new technical solution was required for the upcoming FAIR High Energy Beam Transport lines and Rings. The newly developed system including digital image acquisition, remote controllable optical system and mechanical design, was set up and commissioned with beam. CUPID (Control Unit for Profile and Image Data) is based on the CERN Front-End Software Architecture (FESA) to control beam diagnostic devices. The FESA class for the digital GigE camera (IDS uEye UI-5240SE-M, CMOS type) acquires the images and pre-processes the optical data as required by the geometry of the setup (rotation, stretching). The performance of the system reaches more than 15 frames per second with one connected client. If desired, the raw image data can be written to a file for offline analysis. Additionally, dedicated FESA classes access industrial Programmable Logic Controllers (PLCs) for a reliable slow control solution using the CERN IEPLC library. Camera control, timing, as well as power supply and reset options for up to eight digital cameras are realized by the in-house developed Camera Power Supply controller CPS8. We report on first results with the novel system during routine beam operation. In addition, we describe first operating experiences with new radiation-hard camera (Thermo Fischer Scientific, CCIR MegaRAD3) installed at the SIS18 extraction point with high radiation level.  
poster icon Poster TUPD06 [8.374 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WECZB1 A SQUID-Based Beam Current Monitor for FAIR/CRYRING 510
 
  • R. Geithner, T. Stöhlker
    IOQ, Jena, Germany
  • R. Geithner, T. Stöhlker
    HIJ, Jena, Germany
  • F. Kurian, H. Reeg, M. Schwickert, T. Stöhlker
    GSI, Darmstadt, Germany
  • R. Neubert, P. Seidel
    FSU Jena, Jena, Germany
 
  A SQUID-based beam current monitor was developed for the upcoming FAIR-Project, providing a non-destructive online monitoring of the beam currents in the nA-range. The Cryogenic Current Comparator (CCC) was optimized for a lowest possible noise-limited current resolution together with a high system bandwidth. This CCC should be installed in the CRYRING facility, working as a test bench for FAIR. In this contribution we present results of the completed CCC for FAIR/CRYRING and also arrangements that have been done for the installation of the CCC at CRYRING, regarding the cryostat design.  
slides icon Slides WECZB1 [6.109 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEPF31 Sensor Studies for DC Current Transformer Application 624
 
  • E. Soliman, K. Hofmann
    TU Darmstadt, Darmstadt, Germany
  • H. Reeg, M. Schwickert
    GSI, Darmstadt, Germany
 
  DC Current Transformers (DCCTs) are known since decades as non-intercepting standard tools for online beam current measurement in synchrotrons and storage rings. In general, the measurement principle of commonly used DCCTs is to introduce a modulating AC signal for a pair of ferromagnetic toroid. A passing DC ion beam leads to an asymmetric shift of the hysteresis curves of the toroid pair. However, a drawback for this measurement principle is found at certain revolution frequencies in ring accelerators, when interference caused by the modulating frequency and its harmonics leads to inaccurate readings by the DCCT. Recent developments of magnetic field sensors allow for new approaches towards a DCCT design without using the modulation principle. This paper shows a review of different kinds of usable magnetic sensors, their characteristics and how they could be used in novel DCCT instruments.  
poster icon Poster WEPF31 [4.396 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)