Author: Brooks, S.J.
Paper Title Page
TUPF02 Proposed Pulse Stretching of BPM Signals for the Position Determination of Very Short and Closely Spaced Bunches 294
 
  • P. Thieberger, S.J. Brooks, K. Hamdi, R.L. Hulsart, G.J. Mahler, R.J. Michnoff, M.G. Minty, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
A proposal for a future ultra relativistic polarized electron-proton collider (eRHIC) is based in part on the transport of multiple electron beams of different energies through two FFAG beam transports around the 3834 m long RHIC tunnel circumference in order to recirculate them through an Energy Recovery Linac for their stepwise acceleration and deceleration. For each of these transports, the beams will travel in a common vacuum chamber, horizontally separated from each other by a few mm. Determining the position of the individual bunches is challenging due to their very short length (~12 ps rms) and their temporal proximity (less than 4 ns in some cases). Providing pulses adequate for accurate sampling is further complicated by the less-than-ideal response of long coaxial cables. Here we propose two approaches to produce enhanced, i.e. stretched pulse shapes of limited duration; one based on specially shaped BPM electrodes and the other one on analog integration of more conventional stripline BPM signals. In both cases, signals can be generated which contain relatively flat portions which should be easier to sample with good precision without requiring picoseconds timing accuracy.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)