Optical Fiber Based Loss Monitor for Electron Storage Ring

Takashi Obina, Yoshiharu Yano Accelerator Division, KEK

18/Sep/2013 IBIC2013, Oxford/Diamond, U.K.

Table of Contents

1. Introduction

2. Review of Beam Loss Monitors

- Basics : interactions of stray electron with matter
- Loss monitor Examples
- 3. Optical Fiber Based Loss Monitor at KEK-PF Electron Storage Ring

4. Summary

Table of Contents

1. Introduction

2. Review of Beam Loss Monitors

- Basics : interactions of stray electron with matter
- Loss monitor Examples
- 3. Optical Fiber Based Loss Monitor at KEK-PF Electron Storage Ring

4. Summary

References

- Many good documents have been published
 - CERN Accelerator School (CAS)
 - US-Particle Accelerator School (USPAS)
 - Joint US-CERN-Japan-Russia Accelerator School
 - many BIW, DIPAC, IBIC papers
- "Beam Loss Monitors" CAS2008, K. Wittenburg
- "Beam Loss Monitors (BLMs): Physics, Simulations and Applications in Accelerators", BIW2010, A. Zhukov
- Particle Data Group
 - "Review of Particle Physics" Phys. Rev. D 86, 010001 (2012)
 - 30. PASSAGE OF PARTICLES THROUGH MATTER
 - Particle Physics Booklet http://pdg.lbl.gov/

Why do we need loss monitor?

- Beam loss should be avoided for
 - 1. Personnel Protection
 - 2. Machine Protection
- 1. <u>Personnel Protection (PPS)</u>
 - Averaged loss inside/outside the shield : mSv/h
 - Measured with area monitor
 - typical time range : 1 sec min hour
 - Absolute value (calibrated value) is important
- 2. <u>Machine Protection (MPS)</u>
 - Important to avoid damages on Vacuum components and other accelerator components
 - time range : micro msec (- sec)

Importance of MPS

- Proton (Hadron) Machine
 LHC, J-Parc, SNS, etc over MW class beam power
- High Luminosity electron storage ring – KEKB, PEP-II, etc
- High average DC-Gun machine

 ERL (Energy Recovery Linac), ELBE, etc

In these machines, fast and reliable MPS is mandatory for operation

On the other hand,

how about in electron storage rings for SR?

- Electron storage ring for SR users
 - 3 GeV, 200 mA, C=800 m case, total charge stored in the ring is 530 nC;
 - Beam power : 1 2 kW range
- When the beam is lost :
 - within "one turn" or "several turns"?
 - [Watt/second] or [Joules] is a key
 - Loss Power per unit length [Watt/m] is a key

Ref. CAS2011, "Machine Protection and Collimation", Schmidt

Loss monitor for SR source

- In the past or moderate power machine,
 - We "should" have loss monitor.
 - Not a mandatory tool.
 - Much better if we have the monitor.
- Recent machine
 - Protection of Insertion Device : Important
 - Loss Monitor becomes a "Powerful Tool" for advanced machine tuning.
 - High position resolution
 - can be achieved with fiber + Cherenkov radiation.

Not only for PPS and MPS

- Loss monitor is also very useful for
 - Commissioning
 - Machine tuning
 - Advanced beam diagnostics

Requirements are far different for each case. however, Same or similar technique could be applied

Table of Contents

1. Introduction

2. Review of Beam Loss Monitors

- Basics : interactions of stray electrons with matter
- Loss monitor Examples
- 3. Optical Fiber Based Loss Monitor at KEK-PF Electron Storage Ring

4. Summary

2. Review of Beam Loss Monitors

- 2-1: Interaction of stray electrons with matter
- Brief review of textbook : interaction between charged particle and medium

2-2 : Detection of lost electron

- Loss Monitor Examples
 - Scintillation counter
 - PIN Diode
 - Ion Chamber (Gas, Air)
 - Optical Fiber
 - Dosimeter
 - Cherenkov Radiation \rightarrow detail description in Sec. 3

When electron enters into medium,

it loose its energy due to

Low energy e-: Ionization Excitation

High energy e-: Bremsstrahlung

Coulomb scattering Rutherford scattering Multiple scattering

Electron stopping power

Stopping-power and range tables for electrons http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

IBIC2013, Diamond, UK

When photon into medium,

Various effects will occur depending on its energy

- Photoelectric effect
- Rayleigh scattering
- Compton scattering
- Pair creation

Photon cross section (Lead)

"Pair, Triplet, and Total Atomic Cross Sections (and Mass Attenuation Coefficients) for 1 MeV-100 GeV Photons in Elements Z=1 to 100", J. H. Hubbell, H. A. Gimm, I. Overbo; JPCRD 9(4) pp. 1023-1147 (1980) http://www.nist.gov/data/PDFfiles/jpcrd169.pdf

Simulation

Monte Carlo Simulation codes are available

Five Major Codes Code comparison chart, for example, http://mcnpx.lanl.gov/opendocs/misc/chart.ppt

Code	Institute	Language	Comment
MCNPX	LANL	Fortran 90/C	5 GeV
FLUKA	CERN, INFN	Fortran 77	20 TeV
MARS	FNAL	Fortran 95 / C	1 MeV – 100 TeV
PHITS	JAEA, RIST, GSI	Fortran 77	200 GeV
GEANT4	CERN, INFN, KEK, SLAC	C++	No limit

Code	Institute	Language	Comment
EGS5	SLAC, KEK	Fortran 77	Electron, Gamma
		http://rcwww.kek.jp/research/egs/	

EGS5 ex1 : 2.3 MeV electron, Al

- Flat plate (slab) model
- Density (room temp) = 2.7 g cm^{-3}
- Maximum penetration range = 0.41 cm

Aluminum 0.6 cm no electron pass through

EGS5 Example 2

• 1GeV electron; Electromagnetic shower

60 cm AL Red : e-Blue: e+

2-2 Loss Monitor Examples

2-1 Interactions of stray electrons with matter
 – Brief review of textbook : interaction between charged particle and medium

2-2 : Detection of lost electron

- Scintillation counter
- PIN diode
- Ionization chamber
- Optical fiber
 - Dosimeter
 - Cherenkov

In today's talk, I just show one slides per item. For detail, please refer to CAS2008, K. Wittenburg

Scintillation Detector

- Scintillator
 - NaI, Nai:Ta, CsI, ...
 - YAG, YAG:Ce, ...
 - Alumina Ceramic (Al₂O₃ + CrO₃ ;Demarquest)

There are many choice. Select material suitable for your purpose:

PIN Diode

- K. Wittenburg, DESY
- Key: two PD to reduce SR background

Commercially available from Bergotz

"Electron Beam Loss Monitors for HERA" by W. Bialowons, F. Ridoutt and K. Wittenburg

Ionization Chamber

• Gas or Air ionization chamber

"Beam Loss Monitors" CAS2008, K. Wittenburg

Optical fiber loss monitor : History

• 1970 -

- 1970s : optical fiber as "light guide"
- 1980s : optical fiber as "radiation detector" (Doped)
- 1990
 - "Optical fiber Cherenkov detector for beam current monitoring", I.
 Pishchulin et.al. PAC91 (1991) 1567
 - Theory/Calculation
 - "Quartz Fibre Calorimetry" P. Gorodetzky et.al. NIM A361 (1995) 161
 - For physics detector
 - "A Scintillating Fiber Beam Halo Detector for Heavy Ion Beam Diagnostics" M.A. McMahan et.al. PAC93 (1993) 2187
 - Tesla Test Facility 1 (TTF1), DESY
 - 100 m Ge+P doped fiber; Started from dosimetory using OTDR
 - Cherenkov radiation for high position resolution
 - Many papers are published
 - "Fiber Optic Radiation Sensing Systems for TELSA" H. Henschel et.al., TESLA-Report No. 2000-25, 2000

for reactor

History (2)

- 2000
 - KEK PS (Proton Synchrotron) : T. Kawakubo ICANS-XV (2000)
 - DELTA : G. Schmidt , EPAC02 (2002) 1969
 - DESY: M. Körfer "Fiber optic radiation sensor systems for particle accelerators" NIM A526 (2004) 537
 - "BEAM LOSS AND BEAM PROFILE MONITORING WITH OPTICAL FIBERS" F. Wulf, M. Körfer DIPAC2009 paper and presentation
 - "Cherenkov Fibers for Beam Diagnostics at the Metrology Light Source" J. Bahrdt PAC2009 (2009) 1159
 - "Development of a Fiber-Optic Beam Loss Position Monitor for the Advanced Photon Source Storage Ring" J. C. Doolingy, PAC2009 (2009) 3438

History (3)

• 2009-

- Spring-8/SCSS/SACLA : utilize Cherenkov radiation (DIPAC09)
- "Design, development, and operation of a fiber-based Cherenkov beam loss monitor at the Spring-8 Angstrom Compact Free Electron Laser" X. -M. Marechal, Y. Asano, T. Itoga, NIM A673 (2012) 32
- ALICE DIPAC2009, IPAC2011

• 2012

- "Cherenkov Fibers for Beam Loss Monitoring at the CLIC Two Beam Module" J. W. van Hoorne, Master thesis, Jun 2012, http://cds.cern.ch/record/1476746
- Many accelerator facility use optical fiber as loss monitor.
 - Not explicitly written in the paper, because now the fiber based loss monitor is very popular technique

Optical Fiber Dosimetry

Utilize optical fiber + OTDR
 – Optical Time Domain Reflectometry

"FIBRE OPTICAL RADIATION SENSING SYSTEM FOR TESLA" H. Henschel, M. Korfer, F.Wulf, DIPAC 2001 3.1.1 Local dosimeter system (Optical Power Meter)

DIPAC 2009 (WEOA01)

Fraushofer petitet

Naturwissenschaftlich-Technische Trendenalysen

DESY

Fiber + Cherenkov Radiation

• F. Wulf, DIPAC09

Principle of fiber loss monitor (1)

• Optical fiber could be attached <u>directly</u> to the vacuum chamber wall.

Principle of fiber loss monitor (2)

 Cross sectional diagram of vacuum chamber and a optical fiber.

Principle of fiber loss monitor (3)

• Assume stray electrons : same speed as stored electron beam.

Principle of fiber loss monitor (4)

hit the wall, and produce secondary electron.

Principle of fiber loss monitor (5)

• Generation of Cherenkov radiation in fiber

Principle of fiber loss monitor (6)

Light pulse start to propagate

PMT Location 1

• Put PMT on both end. Detect light pulse.

Measure loss point

Loss point is determined from time diff.

Remark

• Speed of light in fiber < speed of e- in vac

Next: think 2 loss points

• What kind of signal can we observe?

Air

First loss point

• Light pulse start to propagate

Air

Difference of speed

Speed of light pulse < speed of electon

Electron is faster than light pulse

Electron overtake the light pulse

then...

Speed of light pulse < speed of electon

Next loss point

Cherenkov light at second loss point is produced

Light pulse of second loss point

Second light pulse start to propagate

Time difference between two pulse

Both light pulses propagate

PMT signal Downstream time difference : <u>Compressed</u> : Expanded Upstream time difference Vacuum e-**PMT Chamber Wall** $v_{fiber} = 2/3*c$ P_B PA Scope Scope P₄ P_R P_{R}

→ t_d ← IBIC2013, Diamond, UK

18/Sep/2013

47

PMT signal

- Downstream time difference
- Upstream time difference

- : Compressed
- : Expanded

Use upstream signal to get better position resolution

How many photons in fiber?

- Electron energy vs. Thickness of duct
- Property of Cherenkov radiation

Example : 1 cm thick Aluminum

• Dependence on e- energy

18/Sep/2013

100 MeV Photons (Yellow line) are not shown hereafter.

2000 MeV Most particle go straight, in case of 1 cm Al

In real accelerator,

Lost electron does not always hit vacuum wall in this "perpendicular" direction

2000 MeV electron, 1 cm thick Aluminum chamber

2000 MeV electron, 1 cm thick Aluminum chamber

80 deg

Effective thickness of vacuum wall becomes large

Detect electrons with fiber

These electrons will hit the other part of vacuum chamber

18/Sep/2013

Cherenkov Radiation

 Cherenkov radiation is produced when a charged particle passes through a medium at a speed greater than the phase velocity of light in that medium

 $\cos\theta_c = \frac{1}{\beta n}$

βc : speed of the particle n : index of refraction

Glass medium : n = 1.6If a charged particle speed in medium is faster than $0.625c_{r}$ Cherenkov radiation propagate at the angle of 51 deg.

Figure 13.5 Cherenkov radiation. Spherical wavelets of fields of a particle traveling less than and greater than the velocity of light in the medium. For $v > c/\sqrt{\epsilon}$, an electromagnetic "shock" wave appears, moving in the direction given by the Cherenkov angle θ_C .

Ref : J. D. Jackson "Classical Electrodynamics"

18/Sep/2013

Characteristics of Cherenkov Rad.

- In this talk : results for electron is shown
- Number of photons per unit length per unit energy interval

$$\frac{d^2N}{dEdx} = \frac{2\pi\alpha}{hc}\sin^2\theta_c = \frac{\alpha^2}{r_e m_e c^2} \left(1 - \frac{1}{\beta^2 n^2}\right)$$

 $\boldsymbol{\alpha}:$ fine structure constant

• Re-write with wavelength, and let $\beta = 1$

Ref : Particle data group, Particle Physics Booklet http://pdg.lbl.gov/

18/Sep/2013

Number of photons that exit fiber

– "Quartz fibre calorimetry" P. Gorodetzky et.al., NIM A361 (1995) 161

Cherenkov Detector: PMT

- Hamamatsu H10721-110
- Built-in high voltage circuit (only 5 V DC required)
- Gain 5x10³ 4x10⁶
 - Control 0.5 1.1 V DC
- FC adapter (option)
- Rise time : 0.57ns

Selection of Optical Fiber

- Most "Large Core", "Pure Silica" cable OK
- Large core fiber is popular for high power laser
- Sensitivity, Attenuation, Radiation hardness, etc

http://www.fujikura.co.jp/products/tele/o_applied_p/__icsFiles/afieldfile/2013/06/26/SpecialtyFibers.pdf

- Good reference for selection of fiber:
 - X. M. Marechal et.al. NIM A 673 (2012) 32
 - Itoga, ERL2011

Fiber selection

Requirements for the fiber

- Good timing (position) resolution > Non-scintillation fiber (long decay time)
- Radiation hardness
 Non-plastic, non-doped fiber (except F-dope)

 \Longrightarrow Large core

• High photon emission rate

signal / Bunch charge at CT_CH2 [V/nC] 0.1 Fujikura GC600 (3.5 ± 9.2 dB/km) Fujikura SC400 (7.3 ± 0.5 dB/km) Fujikura SC400 (11 ± 1.2 dB/km 0.01 -Fujikura GC400 (10 ± 0.1 dB/km Corning COR200 (16.7 ± 1.9 dB/km) PMT Fujikura SC200 (13.7 ± 6.7 dB/km) Fujikura GC200 (36.6 ± 10.1 dB/km) Mitsubishi ST100 (51.1 ± 23.0 dB/km 0.001 5 6 7 8 9 5 6 7 8 9 10 100 Fiber Length [m]

Fujikura SC-400 is suitable.

- Core, cladding: Pure SiO₂
- Core diameter: 400 um
- Radiation induced loss: below a few dB/km/Gy (expected)
- Attenuation of Cherenkov: 6.8 dB/km (measured)

Courtesy: S. Itoga, ERL2011

Specification: Sensitivity

Evaluation of sensitivity @ SCSS (250 MeV, prototype of SACLA)

Dark current

- Generated in the C-band accelerating structure
- Charge ≈ 10 pC (by CT monitor)
- Amplitude of beam loss monitor: ≈40 mV @ 120 m upstream from loss point.
- Number of secondary electron: SCSS < XFEL

 \implies We achieved the target specifications (\approx 1pC/pulse, 120m)

Courtesy: S. Itoga, ERL2011

Attenuation

SB series (for VIS-NIR)

Model Name	Refractive Index Profile	Core / Cladding Material	Core / Cladding Diameter [µm]	Jacket/ Cord Diameter [μm]	Attenuation [dB/km]	Coating/ Jacket/ Cord Material	NA	Operation Temperature [°C]	MInimum Bending Radius [mm]
SC.200/220B	Step Index	SiO ₂ (Low-OH)/ F-SiO ₂	200 / 220	900 / 2800	≦10 (@850nm and @1064nm)	Silicone / Polyamide / PVC	0.22	-20 to 60	44
SC.400/440B			400 / 440	1100 / 2800					88
SC.600/660B			600 / 660	1400 / 2800					132
SC.800/880B			800 / 1000	1700 / 3300					200

Spectral Attenuation (typical)

Table of Contents

1. Introduction

2. Review of Beam Loss Monitors

- Basics : interactions of stray electron with matter
- Loss monitor Examples

3. Optical Fiber Based Loss Monitor at KEK-PF Electron Storage Ring

4. Summary

Main parameter of KEK-PF

- Energy : 2.5 GeV
 - Full energy injection of Linac
 - Top-up operation
- Circumference : 187 m (frev = 1.6 MHz)
- Horizontal Tune : 10.61

- Two injection system
 - 4 Kicker magnets
 - 1 Pulsed sextupole magnet

Fiber Location

Fiber Location

Installation Photo

Attach on the chamber

Inside of Q-magnet

Insertion Device

18/Sep/2013

Another Installation Methodology

• SACLA/Spring-8 Set in strait along beamline

Loss Point Estimation : Reflection

Measured signal example

- Estimation of each peak
- Add a "Reflector" on the fiber end
 - Reflector can be removed after I determined the reflection signal

Compare with drawing

Cross section of Bend-mag duct

comment

- When we stop the injection, loss signal was disappeared.
 - No signal from stored beam
 - Good S/N to observe the injection loss
 - It might be better to use other loss monitor if you want to observe the loss due to beam and residual gas bremsstrahlung.

Two injection method at KEK-PF

- Kicker injection (4 kicker + septum)
- Pulsed Sextupole Magnet (1 PSM + septum)
 - Suitable for top-up injection

Kicker Magnet

Pulsed Sextupole Magnet

Turn-by-Turn Signal : Kicker/PSM

Beam loss signal and BPM signal with two injection method (Kicker/PSM) at VW14.

ID16

18/Sep/2013

B01-B03 area

• Fiber is installed inside of Q-mag, B-mag

Narrow physical aperture at PSM

Comment 1

- Large loss in 7th turn
- Observed at the downstream of PSM (narrow aperture) and B02 Bending magnet.

× 10⁴

 $imes 10^4$

Comment 2

- No loss in "normal cell" which has large horizontal aperture
- We tried to decrease the loss, but we have three horizontally narrow location :
 - 1. Septum, 2. PSM, 3. Vertical Wiggler
- For now, we have not yet succeeded to decrease the loss. (No problem for daily operation.)
- With the aid of the turn-by-turn loss detection system, we can decrease the loss in near future.

Data Acquisition

- Oscilloscope : 2 GHz analog BW, 10 GS/s
 500 MHz oscilloscope can be used (depends on resolution)
- At first, we used an oscilloscope to measure all loss monitor. It takes about one hour to measure whole ring.
- Large loss is observed at narrow horizontal aperture region, as expected.
 - We don't need loss monitor at normal-cell section \rightarrow we plan to remove fiber in the part
- We plan to introduce an multi-channel digitizer to measure whole ring loss simultaneously.
- Before we introduce loss monitor, the injection-rate was a measure of capture efficiency during top-up operation.

Deterioration by Radiation

- Anritsu ML9002A power meter
 - 850 nm (note: different from Cherenkov range)

Max 10 % deterioration after 2 years operation in PF (2.5 GeV, 450 mA Top-up). No problem for loss pattern measurement. (We don't need absolute loss in this case.)

Summary

- Advantage of Fiber loss monitor
 - Position resolution : 30 cm is easy to achieve
 - Can locate very near to vacuum chamber
 - Easy to install / removal
 - Can cover long distance
 - Good S/N ratio (no X-ray background)
 - Can be a good tool for turn-by-turn analysis
 - Radiation hardness (pure silica)
 - Cost effective
 - Can cover wide range of energy
 - several MeV to GeV machine
 - Can use as detector for wire scanner
 - Freedom of location : dependence on beam energy

Thank you for your allention

If time permits,

Advantage of Fiber

- PIN Diode or Scintillator +PMT
 - All loss signal in upstream is "compressed"
- Fiber

- Possible to distinguish loss location

Example in KEK-Linac Wire Scanner

Loss at pulsed bending magnet always exists without the wire scanner