First Demonstration of EOS 3D-BCD Monitor to Maximize 3D-Overlapping for HHG-seeded FEL

Related Poster: WEPC35 (18th Sep.)

Hiromitsu TOMIZAWA XFEL Division /SPring-8

On behalf of all the staffs contributed to HHG-seeded EUV-FEL (SCSS) at SPring-8

Outline

 Introduction of 3D-Bunch Charge Distribution monitor

 EOS- timing & pointing feedback for HHGseeded FEL (6D phase space overlapping)

 Summary of improvement seeding conditions with EOS seeder-locking

Further developments towards 30-fs resolution

Outline

Introduction of 3D-Bunch Distribution monitor

3D bunch shape monitor (BCD: Bunch Charge Distribution)

Three sets of 3D-BCD elements: de/en-coding to de/o- multiplexing

Non-destructive, Shot-by-shot Real-time Monitor to measure 3D-Bunch Charge Distribution (3D-EO-multiplexing)

The purpose of development 3D-Bunch measurements

Bunch duration measurements based on EO Sampling

- Nondestructive, single-shot, real-time measurements are reliable for : (XFEL) online beam adjustment during operation with SASE lasing.
 (Seeded FEL) feedback on 3D-overlap between e-bunch and HHG-pulse.
 (Our HHG-drive laser pulse and EO-probe pulse are the common pulse.)
- Sub-picosecond temporal resolution ~ Up to now, the highest resolution of 130 fs (FWHM) with **ZnTe** is reported from DESY [1].

- <u>3D bunch shape monitor with a temporal resolution of femtosecond</u> [2-3] Developments of probe laser, EO crystal and optics for high temporal resolution
 - to obtain 30-fs temporal resolution
- ■3D bunch shape monitor (3D bunch charge distribution monitor: 3D-BCDM) Single-shot measurements for both longitudinal and transverse distribution.
- [1] G. Berden et al., Phys. Rev. Lett. 99 (2007) 164801
- [2] H. Tomizawa, et al., in Proc. of FEL 07, Novosibirsk, Russia (2007) 472
- [3] H. Tomizawa, Japan Patent Application No. 2007-133046

Transverse detection:

2D moment of bunch slice as transverse detection

A) Boundary condition of metal vacuum chamber (like Multi-pickup BPM)

[2] H. Tomizawa, H. Hanaki, and T. Ishikawa,

"Non-destructive single-shot 3-D electron bunch monitor with femtosecond-timing all-optical system for pump &probe experiments," Proc. FEL2007, Novosibirsk, Russia, 2007 pp. 472-475.

Eight EO-crystals are probed by single hollow laser beam, simultaneously

[2] H. Tomizawa, H. Hanaki, and T. Ishikawa,

"Non-destructive single-shot 3-D electron bunch monitor with femtosecond-timing all-optical system for pump &probe experiments," Proc. FEL2007, Novosibirsk, Russia, 2007 pp. 472-475.

Linear-chirp (Constant Chirp Rate) used for Spectral decoding.

- [2] H. Tomizawa, H. Hanaki, and T. Ishikawa,
 - "Non-destructive single-shot 3-D electron bunch monitor with femtosecond-timing all-optical system for pump &probe experiments," Proc. FEL2007, Novosibirsk, Russia, 2007 pp. 472-475.

Radial Polarization of linear chirped hollow laser pulse with broad bandwidth:

[2] H. Tomizawa, H. Hanaki, and T. Ishikawa,

"Non-destructive single-shot 3-D electron bunch monitor with femtosecond-timing all-optical system for pump &probe experiments," Proc. FEL2007, Novosibirsk, Russia, 2007 pp. 472-475.

The principle of 3D bunch monitor

Timing shifter to apply temporal delays for each EO-sector (without limits of Rep. rate)
 Square spectrum to guarantee real-time measurements

<u>3D-EOS chamber to measure 3rd order charge moments</u>

of bunch slice

8 EO-crystal assemble holder

Ultra short electron bunch

Outline

 Introduction of 3D-Bunch Charge Distribution monitor

 EOS- timing & pointing feedback for HHGseeded FEL (6D phase space overlapping)

 Summary of improvement seeding conditions with EOS seeder-locking

Further developments towards 30-fs resolution

Prototype SCSS Test Acc. (Seeded EUV-FEL) Mission for the prototype machine ^{1/32} scale model of SACLA Feasibility Test of HHG-Seeding Development & pilot user experiments of HHG-seeded FEL Higher-order Harmonic SPring-8 Compact SASE Source Generation (HHG) in Xe Chicane (for Seeding) S-TWA DF S-APS C-Acc. EG SHB BS BC 50-MeV SCSS (250MeV, 50-60nm) Dump ctron Gu Undulator

Seeded FEL with HHG (Higher-order Harmonic Generation)

Difficulties of HHG-seeded FEL

We have to synchronize independent Pulse Machine Systems (HHG pulse & e-bunch).

Overlapping in 6D phase space under compressed both of HHG-pulse and e-bunch.

Seeded FEL

6D phase space overlap for seeded FEL

	Size (x, y) FWHM	Time (t) FWHM	Wavelength (E) (Energy)	
Electron bunch	~ 500 µm	300-600 fs	61.7 nm	To kill timing jitter,
HHG seed pulse	~ 1 mm	~ 50 fs	61.7 nm	oth pulse/bunch overs each other!

6D Phase Space

Centroid positions (Transverse size): X, Y Momenta

- (Divergence): θx , θy
- Time : *t*

Energy (Central Wavelength): *E*

Measurement of arrival timing with

- EO prove laser was produced from HHG-driving laser for seeding.
- High-dispersion glass-rod (n = 1.96, L = 20 cm) for a linear chirp pulse (175 fs → ~14 ps)

Arrival timing monitor and **BPM function**

Linear-chirp (Constant Chirp Rate) used for Spectral decoding.

Improvement of Hit Seeding Rate

61nm-2nJ HHG@Undulator

Relative timing-drift monitored by EOS

The arrival-time drift is calculated automatically with the computer program in terms of the peak position of the EOS signals.

<u>The arrival-time drift of electron bunch : ~50 ps for ½ day</u> Dynamic Range (Plateau) of EO-probe was limited by 2 ps !!

Relative timing-drift monitored by EOS

The arrival-time drift is calculated automatically with the computer program in terms of the peak position of the EOS signals.

<u>The arrival-time drift of electron bunch : ~50 ps for ½ day</u> Dynamic Range (Plateau) of EO-probe was limited by 2 ps !!

Performance of the Active feedback system to minimize the timing drift

Relative timing drift is actively compensated by using the EO signal

Improvements of FEL Performances $(2010 \rightarrow 2012)$

Previous result (2010)

w/o feedback

$\begin{cases} 6x10 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ 200 \\ 200 \\ 400 \\ 600 \\ 800 \\ 1000 \\ 5hots \\ \end{cases}$

Seeded FEL output was 1.3 µJ
The seeding operation was only obtained less than 10 minutes.

This result (2012)

By using the EOS-based timing-drift system, the HH seeded FEL succeed to continuously operate about a half day which is the machine time of SCSS accelerator with 20-30% hit rate.

Feedback On/Off tests on Seeded FEL operation (2012)

Arrival timing monitor and **BPM function**

Linear-chirp (Constant Chirp Rate) used for Spectral decoding.

EOS-BPM to measure Relative Pointing Stability

Linear-chirp (Constant Chirp Rate) used for Spectral decoding.

Demonstrations of 3D-EOS measurements @SCSS HHG-seeded FEL

It makes single-shot measurements without using a timing-shifter.

In the case of 8 track, it is possible bunch-by-bunch measurements @204 Hz (86 Hz (with refreshing time)).

8ch (track) Spectrographs :

Integrated each tracks to get spectra

Wavelength nm

Counts (Bg Corrected)

Spectrograph

8-divied Fiber bundle

Outline

 Introduction of 3D-Bunch Charge Distribution monitor

 EOS- timing & pointing feedback for HHGseeded FEL (6D phase space overlapping)

 Summary of improvement seeding conditions with EOS seeder-locking

Further developments towards 30-fs resolution

Summary

- We demonstrated 3D-EOS as feedback sys for seeding.
- Introducing EOS-feedback, continual operation
- Dramatically improve seeding condition (2010)
- Short term of timing drift (or jitter) < 500 fs (p-p)

	2010 (w/o EOS-feedback)	2012 (w/ EOS-feedback)
FEL pulse energy	1.3 µJ (max.)	20 μJ (max.)
Seeding hit rate	0.3 %	20-30 %
FEL gain	x 650	x 10 ⁴
Continual operation	< 10 min.	> 1/2 day

 We demonstrated transverse detections to improve relative pointing with diagonal pairs of EO crystals (New spectrograph Tech.)

For longitudinal detection tawards 30fs temporal res.)

i) Organic EO crystal

DAST crystal: it has been used for the broadband THz source.

ii) Supercontinuum generation

Using Photonic crystal fiber

- iii) Broadband Optics for supercontinuum
 - a) waveplate and polarized beam splitter
 - b) AO modulator to make chirping purely linear with chirp scanning Tech.

Developments of DAST EO-detector towards to Res. 30fs!!

Developments of DAST EO-detector towards to Res. 30fs!!

20

40

60

 Mission for real-time monitoring bunch-by-bunch seeding pulse at Soft-XFEL

Femtosecond EO-Detector DAST Organic Crystal: Poster: WPEC35 !!

Enlargements of Dynamic Range with octave-band flattop Spectrum

Chirp scanning to add pure GDD Chirp Rate: 40fs/nm

All of you are welcome at our poster WPEC35 !! 3D bunch shape monitor (BCD: Bunch Charge Distribution)

Three sets of 3D-BCD elements: de/en-coding to de/o- multiplexing

