FC/ATF2 cavities (S. Boogert)

- ATF2
 - 35 C-band cavities, 2 S-band, 2 IP (C-band)
- ILC/CLIC requires
 - ~1000 of cavities 100 nm resolution
 - 25 nm resolution @ 3.2 nC ≈ 1000 nm @ 30 pC (not linear scaling)
 - Stability a key issue for ILC/CLIC cannot afford to calibrate so many BPMs often
 - Systematic effects which compromise the cavity calibration

ATF2 CBPMs (long term stability)

- Resolution as function of
 - charge
 - bunch length
 - offset (so with possible extrapolation)
- Systematics
 - Charge
 - Bunch length
 - Calibration parameters
 - Pilot tone into cavity/electronics, usage?
- SVD usage ubiquitous now
 - Orbit verification and wakes
 - Dispersion
 - Beam based alignment

CBPM: System performance

- Resolution measured using SVD model independent analysis
- Resolution as function of charge (no attenuation)

Calibration

$$I' = I\cos(\theta_{IQ}) + Q\sin(\theta_{IQ}) \qquad p = SI'$$

- 50 nm resolution, 1 um dynamic range
 - Stability to reach resolution at 1 um
 - -50 nm / 1 um = 5 %
 - -10 nm / 1 um = 1 %
- Impact of phase
 - $-\cos(45+1)/\cos(45) = 2\%$

CBPM: Stability

- Repeat calibration over three week period
 - Electronics indicate
 - Scale < 1%
 - IQ rotation ≈1° @ C-band
 - Verify scale and phase not changed
 - Beam orbit slow drift and jitter important in calibration
 - Subtract using MIA-SVD

CBPM: Systematics

- Interesting to check the effect on BPMS of
 - Bunch charge
 - Calibration movement range
 - Bunch length
 - Saturation of electronics and digitiser
 - Temperature
 - Optics
- Have data for all, but need to complete analysis

Conclusions

- Large offset usage and performance
 - Can't always run at cavity centre
 - Effect on resolution when away from centre?
- Calibration systematics
 - important with operation with large offset
 - what are the drift requirements and over what times scales