A Fast Switching Mirror Unit at FLASH

J.D. Good¹, N. Leuschner¹, A.S. Ontoso¹, F. Perlick^{1*}, M. Sachwitz¹, H. Schulte-Schrepping² and L.V. Vu¹ ¹ DESY Zeuthen site, ² DESY Hamburg site, * florian.perlick@desy.de

Introduction

At the "Free Electron Laser Hamburg" (FLASH) the created laser light is diverted towards different test sites by massive silicon mirrors, of which one can be operated in permanent switching mode. In order to match the native FLASH frequency of 10 Hz, the aim is to achieve a switching frequency of 5 Hz. With the initial concept, where the mirror was moved together with the vacuum vessel by a linear drive, a maximum switching frequency of 2.5 Hz was attained with the required precision. Therefore new concepts for the switching process are being developed, putting the focus on reducing the translational inertia in order to increase the switching frequency.

Initial motion Concept: Motion of mirror and vessel with a linear drive

3-dimensional CAD model

Comparison: Steel vs. Titanium Vessel

Maximum switching frequency f _{max} Bellow replacement interval at f _{max}		2,5 Hz	5,0 Hz
		46 days	23 days
Measurements: Titar	nium Ves	sel	
Horizontal angular distortion		Conclusions	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. C	rations during the ocess with f = 5 Hz
4,0 4,0 5,0 5,0 0,0 5,0 0,0 5,0 0,0 5,0 0,0 5,0 0,0 5,0 0,0 5,0 0,0 5,0 0,0 5,0 0,0 5,0 0,0 5,0			pellow replacemen 23 days at f = 5 Hz)
-0,8 -1 5 10 15 20 25 30 35 40 45 50		Motion of t	he mirror inside the ferential!

900

Measurements: Steel Vessel

Horizontal angular distortion

Positional misalignment

Photon Beam (Trigger Signal) 29.9990

30

8

4

P = 1000 mbar

Piezo motor Nanomotion HR8

UHV-motion with piezo motors

Proposed temperature test setup

Conclusions

25%-30% increased temperatures in vacuum (max. 85°C)

Extra 25% increased temperatures with mounted covering plate (105°C)

Stable plateau not reached after 15 minutes

