Commissioning and UH **Diagnostics Development for** Ë Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG the New Short-Pulse Injector Laser at FLASH.

T. Plath^{*}, J. Rönsch-Schulenburg, J. Roßbach, H. Schlarb, S. Schreiber, B. Steffen

Photon

THz Diagnostics

Introduction

FLASH

RF Stations

In order to extend the parameter range of FLASH towards shorter electron pulses down to a few femto-second self-amplified stimulated emission (SASE) pulses, shorter bunches with very small charges of a few tens of picocoulombs directly at the photo injector are necessary. To achieve so short bunches at FLASH, a new injector laser delivering pulses of 1 ps to 5 ps duration has been installed and commissioned. The influence of the laser parameters on the electron beam was studied theoretically. In this paper we discuss the required laser beam diagnostics and present measurements of critical laser and electron beam parameters.

Single Spike Operation

sFLASH

Soft X-ray

Undulators

New short pulse injector laser

Accelerating Structures

	typ. FLASH parameters	single spike operation at FLASH	single spike operation at FLASH
injector laser pulse duration (FWHM)	15.3 ps	15.3 ps	1-3 ps
bunch charge	0.08 - 1 nC	20 pC	20 pC
bunch duration (rms)	30 - 200 fs	3 fs	3 fs
compression	220 - 32.5	2200	140-430
FEL pulse duration (FWHM)	30 - 200 fs	3 fs	3 fs

> Shorter photo-injector laser pulse is required

a large compression factor (~1000) cause RF tolerances of 0.0014° phase tolerance (3fs!) and 0.003% amplitude tolerance

- Seedlaser: 260 mW @ 1030 nm, 54 MHz, 400 fs
- Amplifier: Two-stage Yb:YAG, 10 W @ 1030 nm, 1 MHz, 800 fs
- (2) acousto optic modulator
- Allows for arbitrary pulse picking within 10 Hz pulse trains.
- (3) frequency conversion non-critial LBO converts to 515 nm, BBO converts to fourth harmonic at 257.5 nm
- stretches pulse to a pulse duration of 1 to 5 ps (fwhm), setting can be picked stepless (5) telescope and iris
- variable telescope allows for pulse shaping in combination with an iris of different diameters.

	(See	simulations)						X (uii)
Parameter Optim	isation (Simula	tions)	Dia	gnostics				
Optimisation of laser profile to reduce space-charge forces and	parameter	value		Motor 3 UV Cam to s	treak nera		characteristics	measured laser properties
 therefore optimise bunch-duration and transverse emittance. The scanned laser parameters are laser spot size and aperture size. See (5) in laser system setup section. 	laser pulse duration (FWHM)	2.4 ps		spectrome	ter	4000 lines per cm	spectrum	
	bunch charge	20 pC	gratir		virtual catl	hode	JAI CM-140 GE-UV	laser position on cathode
	macro particles	20 000			quadrant d	liodes	S4349, amplified	amplitude and position stability
	gun gradient	JU IVI V/III			streak cam	iera	Hamamatsu FESCA 200	temporal laser pulse profile
	laser spot size (rms)	0.25 - 3.0 mm	1		(1) telesco	na		
	aperture size	0.4 - 3.0 mm			fixed ty	fixed two lens telescope magnifying by a factor of 5.		
the solenoid in terms of minimum The graph shows a Gaussian distri $ \mathbf{x} = 0.5$ mm (iris, aperture). The c distributions with different σ (laser	emittance	ser intensity [a.u.] $\sigma = 0.5 \text{ mm}$ $\sigma = 1.0 \text{ mm}$ $\sigma = 1.0 \text{ mm}$		QD (5) Motor 2	(4) optics (5) quadra Haman laser pu	for imaging ant diode natsu S4349, ulses (1 MHz	g laser far field on Quadrant Diode assembled by DESY Zeuthen, able to z)	o measure intra-train
simulated bunch leng	-0.4 -0.2 gth		Fir	st SASE & mea	sureme	nts	 bunch 1 <q>=0.05 nC rms=1 pC (1.32%) pkpk=4 pC (7.78%) bg=5 pC rms=0 pC</q> train <q> =0.05 nC rms=1 pC (2.14%) pkpk=3 pC (6.24%)</q> intra-train x10 <rms>=0.000 nC</rms> bunch 2 <q>=0.052 nC rms=1 pC (1.74%) pkpk=5 pC (9.28%)</q> 	 bunch 1 <q>=0.03 nC rms=1 pC (2.99%) pkpk=6 pC (17.3%) bg=5 pC rms=0 pC</q> train <q> =0.03 nC rms=1 pC (4.06%) pkpk=5 pC (14.5%)</q> intra-train x10 <rms>=0.000 nC</rms> bunch 2 <q>=0.033 nC rms=1 pC (3.01%) pkpk=6 pC (18.3%)</q>
	$\begin{bmatrix} 0.6 \\ 0.5 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.6 \\ 0.$	uration of electron bunch e first accelerating module H. y-axis shows the laser	injecto	parametersor laser pulse duration (FWHM)bunch chargebunch duration (rms)	09.01.13 2.4 ps 35 pC 35 fs	11.01.13 2.4 ps 80 pC 78 fs	gun phase: zero crossing +38° 0.03 0.02 0.01	gun phase: zero crossing +38° 0.02 0.015 0.005
	spot size. But	, x-axis shows aperture ich duration is colour		wavelength	13.5 nm	13.0 nm	0 10 20 30 40 50 60 Time (sec)	70 0 10 20 30 40 50 60 Time (sec)

Charge stability measurement of the new photoinjector laser in September

*contact: tim.plath@desy.de

Postercode: TUPC03