CRISP **Test of a non-invasive Bunch Shape Monitor** at GSI high Current LINAC

Peter Forck^{1,2}, Benjamin Zwicker^{1,2}, Christoph Dorn¹, Oliver Kester^{1,2} and Piotr Kowina¹

¹ GSI Helmholtz-Zentrum für Schwerionenforschung, Darmstadt, Germany

² University Frankfurt, Institut für angewandte Physik, Germany

Abstract

B(G2013)

At the heavy ion LINAC at GSI, a non-invasive Bunch Shape Monitor has been tested with several different ion beams at 11.4 MeV/u. The monitors principle is based on the analysis of secondary electrons liberated from the residual gas by the beam impact. These electrons are accelerated, filtered by a electrostatic energy analyzer and deflected by an rf-deflector, acting as a time-to-space converter. A MCP-phosphor combination acts as the detector.

For the applied beam settings this Bunch Shape Monitor is able to obtain longitudinal profiles down to a width of 440 ps with a resolution of 135 ps, corresponding to 2° @ 36 MHz. The applicability is demonstrated.

beam

FAIR

HELMHOLTZ

ASSOCIATION

	Beam energy	70 MeV
	Beam current	<i>70</i> mA
	Beam pulse length	36 µs
	Repetition rate	4 Hz

The Cluster of Research Infrastructures

for Synergies in Physics

Electro-static Energy Analyzer

HV-electrode

Energy analyzer for source volume restriction: \geq Radius ρ =30 mm, $> 90^0$ bending, ±5.5 kV point-to-point focusing

Typical Results and its Discussion

energy analyzer

aperture :

E-field box

Remote controlled aperture: 0.1 to 2 mm e.g. for ±0.25mm & ±0.5mm \Rightarrow ±0.2 mm vert. prolongation (comparable to wire)

Static Compensation Field

Compensation of E-field beam deflection: \succ E-field for box: 30kV/ 70mm = 4.2 kV/mm short intersection length with reversed field \Rightarrow compact design realized

Results:

- bunch shape clearly detectable
- Iarge background contribution [explanation still pending]
- improvements concerning background reduction under way

Beam parameter:

 \succ U²⁸⁺, current I = 200 μ A \succ macro pules lengtht = 180 μ s > gas pressure $p = 5 \cdot 10^{-6}$ mbar > averages of 64 macro pulses

Phosphor: P20 **CCD**: PCO SensiCam VGA 12 bit, cooled to -10° C digital interface

MCP-phosphor module:

Drift from rf-deflector: 670 mm

corresp. to $\alpha_{max}=3^{\circ}$

MCP: Hamamatsu Ø 77 mm

Resolution Determination

- electrons originated from bottom HV grid as
- liberated by the residual gas ion impact
- \succ acceleration within E-field box
- > focusing by rf-deflector dc-voltage acting as einzel lens
- \succ depending on aperture's setting (here maximal open)
- \Rightarrow electron optics leads to 2.7 mm on \emptyset 77 mm MCP

Calibration Measurement Variation of rf phase by electronic phase shifter, set value accuracy ≈0.3 °

Results depends on chosen rf-power :

Demonstration of Usability

rf deflector P = 64 mV

Change of beam's bunch length by buncher cavity upstream of monitor location:

- clear image of bunches at MCP variation of rf deflector power
- projections show bunch shape variation of beam parameters

 \Rightarrow further experiments required

caused by field of MCP HV leads

 \Rightarrow mechanical shield foreseen

- detectable
- \Rightarrow functionality proven

Problems:

large background reason not understood

structure in background

 \geq 90 % within \oslash 20 mm compared to single E-field

Funded by European Union under CRISP WP3

Beam parameter:

MCP images:

rf deflector P = 640 mW

 U^{36+} , current I = 100 μ A, macro pules length t = 180 μ S, gas pressure $p = 5 \cdot 10^{-6}$ mbar, averages of 128 macro pulses

Summary and Outlook

- > Monitor design: Adaption of 'Feschenko Monitor' to non-destructive device
- Realization and successful beam-based test
- \rightarrow Determination of resolution \rightarrow sufficient for application, monitor can be used at UNILAC
- Resolution can be matched to bunch length by rf power adaption

> Background not completely explained, but improvements done, beam-based test in Feb. 2014

Example: set value 6.6° @ 36 MHz \Leftrightarrow 514 ps Result: 10.3 mm offset leads to 50 ps / mm

