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Abstract 
The ESRF fast orbit correction system has been in 

operation since May 2012 [1]. The orbit correction 
scheme relies classically on the calculation of an orbit 
correction based on the SVD analysis of the response 
matrix of our 224 BPMs to each of our 96 correctors. The 
rate of the calculation of the corrections is 10 KHz; we 
use a PI loop achieving a bandwidth of 150Hz completed 
with a narrow band pass filter with extra gain at 50Hz. In 
order to make the best use of the correctors dynamic 
range and of the resolution of the calculation, it can be 
useful to limit the bandwidth of loop for the highest order 
vectors of the SVD, or even to totally remove some of 
these vectors from the correction down to DC. Removing 
some of the eigen vectors while avoiding that the loop 
becomes unstable usually increases a lot the complexity 
of the matrix calculations: we have developed an 
algorithm which overcomes this problem; The test of this 
algorithm is presented. We present also the beneficial 
effect at high frequency of the limitation of the gain of the 
correction of the highest SVD eigen vectors on the 
demand of the peak strength of the correctors and on the 
resolution of the correction calculation.  

 The ESRF Orbit Control System  
The 224 BPM pick up sets of our storage ring are 

equipped with Libera Brilliance electronics 
interconnected by the so called Communication 
Controller [2] network broadcasting the position data of 
the 224 Libera at a rate of 10 KHz. The orbit correction is 
applied by a set of 96 corrector magnets; the bandwith of 
these correctors goes from DC to 500Hz. The dynamic 
range of the correctors is 75rad up to 50 Hz but 
decreases down to only 7.5 rad up to 500Hz. We are 
using the corrector magnets embedded in the sextupole 
magnets cores to steer the beam; the control of the magnet 
power supplies and the orbit correction calculation are 
performed by 8 separate processor boards as shown on 
figure 1. For this processing, we selected PMC boards 
embedding a Xilinx Virtex-5 FPGA. 

SVD BASED ORBIT CORRECTION 
Since the number of the BPMs is not the same as the 

number of the correctors we derive the orbit correction 
from the BPM measurements using a correction matrix 
obtained by the classical Singular Value Decomposition 
(SVD) method [2]; we measure the orbit and refresh the 
corrector settings at a rate of 10 KHz. We have used for 
this a 10 KHz iteration of the values of the correction 
currents with a PID algorithm combined with an 
additional 50 Hz notch filter aimed to improve the 

damping of the perturbation at the AC main power supply 
frequency. 

 
Figure 1: Layout of the new orbit correction system. 

SVD Principle 
SVD of the response matrix R of the BPMs to the 

correctors turns the initial Mr matrix into a set of three 
matrixes U,S,V with R=U*S*V’; U performs the 
projection of the effect of the 96 correctors on the orbit, as 
measured by the 224 BPMs on a set of 96 unitary eigen 
vectors; V performs the projection of an orbit measured 
by the 224 BPMs on the same set of 96 unitary eigen 
vectors; the effect of the correctors is given by the S 
diagonal matrix, then the combination of eigen vectors 
produced by the action of the correctors is converted into 
BPMs outputs by the matrix V as shown on figure 2. 

 
Figure 2: SVD of the response matrix. 

S coefficients are positive in decreasing order. The C 
correction matrix, inverse of the R response matrix will 
then be given by: C= V*S-1*U’. We can see on figure 3 
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that the correction of the higher order eigen vectors 
contribution to the orbit distortion puts a very high 
demand on the correctors for a small effect, compared to 
the contribution of the lower order vectors. 

 

Figure 3: Pattern of the 96 eigen values of the response 
matrixes and correction matrixes; dashed lines: correction 
eigen values limitation used for the tests of the eigen 
vectors weighting.  

Iteration  
The result of the multiplication of the orbit error by the 

correction matrix is performed after every period of the 
10KHz; however this result is not applied all the way to 
the correctors input but by a loop combining a PI 
corrector and a selective 50Hz damping filter, resulting 
for each of the eight feedback processor in the data flow 
shown below 

 
Figure 4: Loop iteration step. 

Effect of the Eigen Values Manipulations 
When generating the correction matrix, it is possible, 
instead of using the original S-1 coefficients given on 
figure 2, to apply a ponderation on these eigen values, or 
even to set to zero the coefficients corresponding to some 
of the eigen vectors. If a weighting is applied to the S

-1 

correction matrix coefficients, the final DC orbit will be 
not be modified by the weighting, due to the effect of the 
integrator in the PI corrector, but the frequency response 
of the loop will be different for each eigen vector, 
depending on the value of the weighting factor. If we 
want to limit the effect of the correction on the lower 
eigen vectors down to DC, we must then set to zero the 
ponderation coefficients; the orbit correction will not be 
performed at all on these vectors and the the final orbit 
will be slightly different; this can be beneficial if the 
vectors ignored are mostly sensitive to imperfections of 
the orbit correction system like response matrix 
measurement errors or BPM misalignment rather than real 
beam orbit distortion. 

Reduction of the Loop Gain for the Highest 
Order Vectors  

As shown on the figure 2, in order to obtain the same 
frequency response on all the eigen vectors, the gain of 
the iteration loop, must be much higher on the upper 
vectors; it means that if the correction matrix is slightly 
incorrect, the noise applied on the beam due to this 
slightly wrong correction will come mostly from the 
highest order eigen vectors. At DLS this is avoided with 
the application of a weighting based on the so-called 
Tikhonoff regularisation on the eigen values of the 
correction matrix [2], resulting in a significant reduction 
of the spurious beam orbit distortion at high frequency. 
We tested the application of a simple weighting limiting 
the value of the coefficients of the S-1 matrix to a 
maximum value (dashed line on the plots of the figure 3). 
We found that the effect of such a normalisation on the 
final stability is visible (at least in the vertical plane) but 
not dramatic on the ESRF storage ring beam; the average 
vertical beam motion integrated from 0 to 1KHz is 1.2m 
without feedback, .59m with feedback and no eigen 
values weighting, and .55m with weighting; the 
horizontal beam motion is 3m without feedback, 1.04m 
with feedback and without weighting, and 1.08m with 
feedback and weighting; we think it is because, compared 
to the effect on the DLS beam, the original ESRF beam 
stability is worst, and the Libera Brillance used at ESRF 
have a lower noise than the Libera Electron used at DLS, 
so the relative effect of the noise reduction due to the 
matrix regularisation is then small compared to the rest of 
the residual beam motion. However such a weighting 
have other beneficial effects for us: the FPGA used for 
the correction calculation are performing fixed point 
calculation, which limits the resolution of the calculation; 
we choose to set our regularisation parameters in order to 
achieve a reduction by a factor 2 of the range of the 
absolute value of the coefficients of the correction matrix, 
resulting in a more accurate correction calculation for a 
given number of bits used in the calculation. 

 
Figure 5: Plot of the column 10 of the horizontal 
correction matrix, without (left plot) and with (right plot) 
weighting applied to the S-1 coefficients. 

 Another beneficial effect of this weighting is to reduce 
the peak amplitude of the correction applied in response 
to some fast and localized orbit distortion; on our storage 
ring the injection bump is not perfectly closed, and the 
parasitic kick applied to the stored beam at each injection 
results in a large correction bump applied by the orbit 
correctors in the kickers vicinity. The maximum 
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amplitude of the short current pulses delivered to these 
correctors reaches half their fast signal dynamic range. 
Reducing the loop gain on the highest eigen vectors also 
reduces the demand on the correctors in the region of the 
injection kickers without spoiling the quality of the orbit 
correction for the beam delivered to the users between the 
injections.  

 

Figure 6: Plot of the horizontal correction applied during 
an injection kick (left: no weighting, right: weighting 
applied 

Total Suppression of Higher Order Vectors  
It can also be useful to totally suppress some eigen 

vectors in the correction matrix; If we suspect that the 
BPM alignment will always be slightly imperfect and that 
the static orbit reading projection on the highest eigen 
vectors is mostly due to these misalignment, we will get 
an orbit closer to the optimal orbit by not using them at 
all. A simple way to do this is to set to zero in the S-1 
matrix the coefficients corresponding to these 
vectors:

Figure 7: Simplest but unstable method of suppression of 
the higher orders vectors. 

 
 However, in this case, if the result of the multiplication 

of the BPM data by the correction matrix generates some 
spurious signals at the iteration loop input (and it will!), 
the part of this spurious signals generating an orbit 
distortion on these highest eigen vectors will not be any 
longer cancelled by the loop, now limited to the lower 
order vectors, and will accumulate since the integrator is 
the last stage of the loop, and eventually will drive the 
correctors to saturation, even if the effect on the beam is 
actually small. 

We have tested the effect of our orbit correction with 
the correction matrix shown on figure 7 with the 67th to 
96th upper vectors suppressed; we observed that just after 
the loop closure, the initial damping of the fast beam 
motion was normal but after a few seconds the correctors 
settings reached values higher than their dynamic range, 
leading eventually to a loss of the orbit control. Looking 

at records of the BPM and correctors data, we noticed a 
continuous increase of the correctors setting; the SVD 
analysis of these settings, showed a normal and small 
level on the first 66 vectors, the correction level increase 
is present only on the upper vectors, as shown on figure 8. 

 

 
Figure 8: Drift of the correctors setting when method of 
the figure 7 is used for the higher vectors suppression (left 
pattern of the plot current drift on a set of three of the 96 
correctors, right SVD analysis of the 96 currents during 
the drift)  

A clean way to overcome this problem would be to 
split the correction calculation as shown on figure 9: 

 
Figure 9: Stable method of suppression of the higher 
orders vectors. 

In this way there is not any more the possibility of an 
accumulation of spurious correctors settings on the 
highest eigen vectors. The drawback is that this scheme 
would now require at least one 96*224 matrix 
multiplication followed by the iteration step and a 96*96 
matrix multiplication instead of one 96*224 matrix 
multiplication followed by the iteration step if the 
calculation is performed on one single processor. This 
drawback is even worse in the case of the ESRF system 
where the normal correction calculation, is split in eight  
96/8*224 matrix multiplications, since it is performed on 
eight FPGA, and would then require eight time a 96*224 
matrix multiplication followed by  the iteration loop step 
and a 96*96/8 matrix multiplication; it is not possible to 
implement it in the FPGA used on our system. The 
solution that we found was to keep all the eigen vectors 
active for the fast calculation of the orbit correction but to 
prevent the DC damping on the higher order eigen vector 
with a trim of the input BPM data: the low average 
settings of the correctors is multiplied by RHOEV, the 
system response matrix limited to the higher order eigen 
vectors that we want to suppress; the result of this 
calculation is then subtracted from the BPM data at the 
input of the loop every 30 seconds; this prevents the loop 
from applying any DC correction on these higher order 
eigen vectors; all this data treatment being made at a slow 
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rate, it puts no extra demand on the FPGA processing 
power. 

 

Figure 10: Principle of the DC suppression of the orbit 
correction on the highest order SVD eigen vectors. 

TESTS 
We have tested the effect of the cancellation of upper 

SVD eigen vectors on the orbit correction of our storage 
ring; the parameters of the additional loop acting on the 
position offsets added to the main loop input have been 
set in order to cancel the vertical DC correction of the 
vectors 67 to 96. We have then tested the orbit correction 
just after a full refill of the SR, in order to see how the 
system will behave during the significant changes in the 
orbit correction pattern caused by the thermal stabilisation 
of the ring. The figures 11 and 12 shows the evolution of 
these position offsets and the evolution of the average 
value of the correctors settings over one hour, while the 
fast orbit correction was active. The figure 13 shows the 
evolution of the BPM readings, with the offsets 
subtracted; the orbit drift is low and the level of the higher 
order vectors contribution to this drift is one hundred time 
lower than the offsets applied on the BPM readings 
(figure 11), which shows the effectiveness of the 
algorithm. The left plots shows BPM and correctors 
settings and the right plot shows the projection of this 
settings on the eigen vectors space. The effect of the 
additional loop is obvious: while the BPM offsets 
addition is done only on the upper vectors, the change in 
the setting of the correctors is limited to the 66th lower 
vectors of the SVD. 

 
Figure 11: Plot of the offsets applied to the input data 
(BPM) to cancel the correction on the 67th to 96th upper 
eigen vectors (right plot: SVD analysis).  

 
Figure 12: Plot of the drift over one hour of the correctors 
settings with the upper vectors correction suppressed  
(right plot: SVD analysis).  

 

Figure 13: Plot of the drift over one hour of the BPM 
readings (real position minus figure 4 offsets) with the 
upper vectors correction suppression algorithm active 
(right plot: SVD analysis).  

CONCLUSION 
We have tested the effect of the application of different 

gains on the different eigen vectors of the SVD of our 
orbit correction system; if a total cancellation of the gain 
is needed, when we want to suppress the contribution of 
some higher order eigen vectors down to the DC orbit 
correction, we also found an algorithm which allows a 
stable operation of the loop, without increasing the 
complexity of the part of the correction calculation which 
must be performed at the full 10KHz iteration rate of the 
loop. 
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