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Abstract
Emittance is one of the main characteristic properties of

a beam of particles in an accelerator, and it is measured
generally by means of the particle beam profile. In partic-
ular, when the beam of particles is emitting an X-ray pho-
ton beam, a non perturbative way of measuring the particle
beam profile is to image it using the emitted X-ray photon
beam. Over the years, numerous X-ray imaging methods
have been developed, fulfilling the requirements imposed
by a particle beam becoming smaller, and approaching mi-
cron size for electron beam machine with vertical emittance
of the order of 1 pm-rad. In this paper, we will first recall
the properties of the X-ray photon as function of source and
its properties. From this we will derive some natural def-
inition of a large aperture X-ray imaging system. We will
then use this selection criterion to select a number of X-ray
imaging devices used as a beam profile diagnostics in an
attempt to give an overview of what has been achieved and
what is possible to achieve with the selected devices.

INTRODUCTION
For a synchrotron radiation (SR) light source the emit-

tance is the main parameter that describes its ultimate per-
formance, as it is inversely proportional to the brilliance of
the emitted SR. From the first SR light source to the latest
ones under construction or proposed to be built in the next
decade, the emittance has been reduced from thousands of
nm.rad to nm.rad and even less. One of the main diagnos-
tics for the emittance, and the emittance coupling (or ver-
tical emittance) is a measurement of the beam transverse
size, which is proportional to the square-root of the emit-
tance. As a result of the emittance reduction, the transverse
beam size as also been reduced to the range of 1 to 20 µm,
and the vertical emittance to 0.1 to several µm. Therefore,
the measurement of beam profile and beam size is becom-
ing more and more challenging, due to the high resolution
imposed on the profile measurement system. A natural way
to measure the beam profile and thus the emittance, is to
image the particle beam using the SR. Since the resolution
required for the very small beam size is in the µm range,
large aperture imaging system and small wavelengths be-
comes a logical choice for such a measurement. In particu-
lar, large aperture X-ray imaging systems seem particularly
adapted, as they provide the required sub-micrometer res-
olution. In this paper, we will review the large aperture
X-ray beam profile measurements systems that have been
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developed so far. Before that, we will refer to the work
referenced in [1–4], on the properties of the SR sources
and their image. This will then provide a definition of
what is understood by Large Aperture for an X-ray imag-
ing system imaging a SR source. Using the Fourier Optics,
we will recall and illustrate relations between resolution of
an imaging system and its Point Spread Function. In the
same section, we will also report on deconvolution tech-
niques, which are the natural following step to extract from
the image most of the information about the source. We
will see later that some of the imaging systems presented
here cannot be operated without deconvolution, in particu-
lar the class of imaging systems that constitute the coded
apertures. This class of systems include Uniformly Re-
dundant Array (URA), Optimized RAndom pattern (ORA),
Hexagonal URA (HURA), Modified URA (MURA), but
also Fresnel Zone Plate (FZP). We will report on measure-
ments of very small beam sizes using two of these systems.
One is a URA and requires deconvolution to extract infor-
mation from the image, and the other is a FZP. For the case
of a FZP the diffraction limit point spread function has a
width of the order of the outer rings difference, which is in
the nm range for X-ray. As a consequence the resolution
is generally good enough so that deconvolution is not re-
quired. We will report on beam profile measurement with
FZP, but also on the new technologies for making diffrac-
tion limited FZP for hard X-ray. Another class of large
aperture X-ray imaging systems is known as Compound
Refractive Lenses (CRLs). In this section we will report on
the state of the art in making CRLs and we will illustrate
with beam profile measurements and their performances.
Finally, before concluding, we will be discussing the com-
missioning, operation, cost and performance of these sys-
tems and compare them to a small aperture X-ray beam
profile diagnostic which is the X-ray pinhole camera.

SR X-RAY SOURCES
The SR X-ray source, i.e. the relativistic charged particle

beam in a bending magnet or in an undulator has been de-
scribed by G. Geloni et al. in a series of papers [1–4]. As it
is shown in these series, SR is a random stochastic process,
and as such the laws of Statistical Optics must be applied to
solve the image formation problem. In some cases, Statisti-
cal Optics is not the only possible description of the formed
images. For instance, in the case of an undulator SR, it is
shown that for a beam emittance much larger that the wave-
length diffraction limit, Geometrical optics coincides with
the Statistical Optics description of the SR. In the follow-
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ing we will try to summarise some of the main results for
X-ray SR.

Bending Magnet SR
As shown in [1], the bending magnet SR properties for

imaging can be fully described by its transverse mutual
coherence. For X-ray, the source appears to be quasi-
homogeneous, and satisfies the condition for which Geo-
metric Optics can be used for the image formation problem.
This condition is expressed as follow:

C = max
[

2π ε β
λ L f

,1
]
·max

[
2π ε L f

β λ
,1
]
≫ 1 (1)

where ε is the horizontal or vertical emittance, β is the be-
tatron function at the source, λ is the wavelength at which
the SR is observed, and L f is the radiation formation length
and is defined for a bending magnet by L f = (λρ

2π )
1
3 , with

ρ the bending radius. For 3rd generation light sources,
where vertical emittance can be of the order of 1 pm.rad,
a bending radius of the order of 10 m, for λ ≃ 0.1 nm, the
radiation formation length is of the order of 0.5 mm and
C ≃ 2000, so the necessary condition for which Geometric
Optics can be used is satisfied. It follows that when investi-
gating the image formation of the source, one can use either
Fourier Optics together with Statistical Optics description
of the source, or Geometrical Optics with ray tracing tech-
niques, whichever of the method appears the most suitable
to the problem to be solved. Any imaging system can be
treated by means of Fourier Optics, in which operators are
propagating the source through the optics elements of the
experimental setup. With incoherent imaging, the propaga-
tion operator is linear in intensity. The electric field distri-
bution and associated phase have been described in many
papers [1, 5] and implemented in computer codes like for
instance SRW [6] and SPECTRA [7]. The equation for the
electric field for a single electron with offset lx,y and angle
ηx,y (equation (82) of reference [1]) is reported below:

Ẽ =
iωe
c2zo

eiΦseiΦo

∫ ∞

∞
dz
(

z
ρ

x̂ + (θy − ηy) ŷ
)

e
iω
[

z
2γ2c

(
1+γ2(θy−ηy)

2
)
+ z3

6ρ2c

]

(2)

with

Φs =
ωzo

2c

(
θ 2

x +θ 2
y
)

(3)

and

Φo = −ωρ (θx − ηx)

2c(
1
γ2 + (θy − ηy)

2 +
(θx − ηx)

2

3

)
− ω

c
(lxθx + lyθy)

(4)

and x̂, ŷ are the unit polarisation vectors in the horizontal
and vertical planes; ρ is the bending radius; θx,y is the ob-
server angle from the source; ω = 2π

λ is the frequency (λ
the wavelength) at which the SR is observed; c the speed
of light.

This expression shows the phase of the electric field to be
different from the spherical quadratic phase coming from a
point source. As a result, the point spread function (PSF)
is somehow blurred compared to the PSF of a point source.
The intensity of the field given by the square modulus of the
integral is constant in the horizontal plane and has a finite
distribution in the vertical plane. The integral can be ex-
pressed by either Airy functions or Bessel functions. In the
vertical plane, the function is even with the vertical angle
variable, goes through a maximum and decreases towards
zero with large angles. The vertical intensity profile has a
width which defines an opening angle1 for the beam θBM:

θBM ≃ 1
γ

(
ω
ωc

)−0.425

(5)

The finite distribution in the vertical plane is limiting the
resolution of an imaging system to the natural opening ver-
tical angle of the photon beam. In the horizontal plane, the
resolution will be limited by the opening angle of the imag-
ing system observing the source. This will be discussed in
the next section.

Finally, another important parameter for the SR is the
flux of photons impinging on an imaging aperture. This
expression is given by:

(6)

dΦ
dΩ [Photons/0.1%BW/mrad2]

= 1.237

× 1013E2
[GeV ]I[A]

y2 (1 + X2)[K2
2/3 (ξ ) +

X2

1 + X2 K2
1/3 (ξ )

]
where y = ω

ωc
, and ωc =

3cγ2

2ρ is the critical frequency, X =

γθy, ξ = ω ρ
3c

(
γ−2 +θy

) 3
2 ; K2

ν (ξ ) is the first order modified
Bessel function of order ν .

From Eq. 6 it can be seen that the number of photons/s
impinging on a large aperture is of the order of 1010 close
to the critical photon beam energy.

Undulator SR
The undulator SR and coherence properties of this

source has been extensively studied in [2, 4]. As function
of the beam size and divergence in the undulator, and for a
given wavelength, it can be shown that the non-stationary
source may be non-homogeneous (coherent or partially co-
herent) with non-Gaussian distribution, and in some other
cases the source is quasi-homogeneous and is described by
the Gaussian distribution of the relativistic particles’ beam.

1The opening angle for the bending magnet and the undulator given
here are θ = 2σ , with σ the r.m.s value of the Gaussian fitting the angular
profile
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In this case Geometrical Optics can apply to the image for-
mation problem. The different cases depend on the val-

ues of N̂ =
σ2

x,y ω
cLw

and D̂ =
σ2

x′,y′ ω Lw

c , the normalised square
beam size, and the normalised square beam divergence, re-
spectively; σx,y and σx′,y′ are the beam size and divergence,
and Lw is the undulator length.

• Case Nx ≫ 1 and Dx ≫ 1: In this case, the source
can be considered quasi-homogeneous in the horizon-
tal plane. Moreover, the cross-spectral density can
be factorised in two functions of horizontal and ver-
tical variables. In addition, in the horizontal plane, the
source can also be described by Geometrical Optics,
and the virtual source corresponds to the beam distri-
bution.

1. Case Ny ≫ 1 and Dy ≫ 1: this is the same situa-
tion as for the case of Case Nx ≫ 1 and Dx ≫ 1,
but in the vertical plane.

2. Case Ny ≫ 1 and Dy > 0: this corresponds also
to a situation in which the image of the source
through a lens will correspond to the beam dis-
tribution.

3. Case Ny > 0 and Dy ≫ 1: This is the case of a
source with non-Gaussian distribution in the ver-
tical direction. The image of the source in the
vertical plane does not correspond to the beam
vertical distribution, but is a convolution of the
beam distribution with a universal function B̂
(see Eq. (186) in [4]. In the particular case
of Ny ≪ 1, which corresponds to the diffrac-
tion limit case, the image profile is described
by the universal function B̂. The source is non-
homogeneous.

4. Case Ny ≪ 1 and Dy ≪ 1: This is the fully
vertical diffraction limited case, the source is
non-homogeneous, and the image of the source
through a lens is described by a universal func-
tion Ψ given by Eq. (95) in [4]

• Case Nx > 0 and Dx ≪ 1: In this case, we have au-
tomatically Ny ≪ 1 and Dy ≪ 1 so that the source is
diffraction limited in the vertical plane. The image
of the source is given by Eq. (387) of [4]. It is not
Gaussian and is the convolution of a universal func-
tion given by Eq. (386) of [4] and the beam horizontal
distribution. In the case of Nx ≪ 1, corresponding to
the case of a diffraction limited source in both hori-
zontal and vertical planes, the image is given by the
scaled universal function, Eq. (388) of [4].

In all these cases, the SR beam propagates from the un-
dulator to the imaging system and has a defined aperture,
which for the nth harmonic has an opening angle of the or-
der of

θu,n =

√
n(1+K2/2)

2Nw γ2 (7)

Nw is the number of undulator periods, and K is the undula-
tor deflection parameter. As for the vertical opening angle
of the bending magnet, this finite opening angle defines a
limited resolution for the imaging of the source.

Finally, the flux of photons in the nth odd harmonic of a
planar undulator is given by the following equation:

(8)
dΦn

dΩ [Photons/s/0.1%BW/mrad2]
= 1.744

× 1014 N2
w E2

[GeV ] I[A]Fn (K)

and

Fn (K) =
n2K2

1 + (K2/2)2(
J(n−1)/2

(
nK2

4 + 2K2

)
− J(n+1)/2

(
nK2

4 + 2K2

))2

(9)

with Jm(X) the modified Bessel function of the first kind of
order m and variable X .

It follows that for a first harmonic of a planar undulator
with 100 periods, K = 2, electron energy E = 3 GeV, and
a current I = 300 mA, the flux of photons is of the order of
first odd harmonics is of the order of 1018 photons/s/0.1%
bandwidth.

POINT SPREAD FUNCTION,
RESOLUTION, DECONVOLUTION

TECHNIQUE
The description of the SR source showed that SR prop-

agates as a beam with a narrow opening angle. This di-
rectionality of the beam implies the beam is partially co-
herent in front of an imaging system. As a consequence,
the general treatment to solve the image problem imposes
knowledge of the spectral degree of coherence of the beam
in front of the imaging system. In addition, the opening
angle of the SR can be seen by means of the Fourier Optics
as a natural limiting aperture applied in front of an imaging
system. In that sense, we will first define as a large aper-
ture X-ray imaging system any X-ray imaging device that
has a non-limiting aperture to the SR beam. Following this,
the PSF of the system, defined as the spatial Fourier Trans-
form of the product of the autocorrelation of the aperture of
the imaging system and the spectral degree of coherence, is
dominated by the natural aperture of the SR beam.

In the previous section we have seen that for the bending
magnet SR, the horizontal opening angle is defined by the
aperture system intercepting the arc of emitted SR, and the
vertical opening angle is given by Eq. 5. Besides, for X-
ray and very small emittance beam, the condition given by
Eq. 1 is always satisfied so that Geometrical Optics can be
used to find out the image of the beam. As a consequence,
the PSF is expected to be a peaked function decreasing non
necessarily monotonically to zero at infinity. The width of
the PSF is also expected to be inversely proportional to the
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Figure 1: Resolution for an ideal aberration free large aper-
ture X-ray imaging system.

aperture of the imaging system in the horizontal plane, and
to the beam aperture in the vertical plane. The resolution
∆BM of the imaging system can be defined as the width of
the PSF, and is expected to be of the order of:

∆BM ≃ λ
2sin(θBM)

≃ λ
2θBM

(10)

as θBM is always a very small angle.
Similarly, for the case of the undulator SR, and for the

cases when the Geometrical Optics apply, the PSF width
will be defined as:

∆U ≃ λ
2sin(θU )

≃ λ
2θU

(11)

In the case of very small emittance in the diffraction limited
cases, it appears that Geometrical Optics cannot be used to
solve the image formation problem, and that the image is
not a scaled profile of the source. The use of undulator
SR for beam profile diagnostics has to be questioned and
wavelength carefully chosen in order to avoid a diffraction
limited source.

Figure 1 shows numerical examples for the vertical res-
olution, taking the case of Diamond and ESRF, for the case
of the bending magnet SR and a similar undulator with 90
periods, 2 m long. Clearly, the case of the bending magnet
SR is most favorable.

Deconvolution Techniques
It is clear from Fourier Optics [8] that for a given imag-

ing system, the object to be imaged is convolved with the
impulse response of the imaging system, i.e. the PSF. With-
out any processing, the resolution is given by the width
of the PSF. However, it has been long seen and investi-
gated that the information on the image can be restituted by
means of deconvolution, and provided a very good knowl-
edge of the PSF of the system. Since imaging systems are
mostly sensitive to the intensity of the signal, incoherent
imaging favours deconvolution techniques because the sys-
tem is linear in intensity [8]. Partially coherent systems will

present speckled images that are difficult to deconvolve due
to the non-linearity in intensity of the system. For incoher-
ent imaging, many algorithm for image deconvoltion exist
and this is a very active research area in applied mathemat-
ics and applied optics. We will simply present here some
of the concepts and illustrate image deconvolution with a
set of pinhole apertures as shown in [9].

An image can be mathematically described by the con-
volution of the object intensity profile with the intensity
impulse response of the imaging device as:

i(x,y) = h(x,y)⊗o(x,y)+n(x,y) (12)

where i(x,y) is the image describe in 2-D coordinates,
h(x,y) is the impulse response of the system and n(x,y) is
the noise in the system. In any acquisition system, the pres-
ence of noise is inevitable, and requires to be introduced in
the model. Fourier Transform (FT) of Eq. 12 is shown
below, using the FT convolution properties.

I(ν ,η) = H(ν,η) ·O(ν,η)+N(ν,η) (13)

It appears that without any noise, and with the knowl-
edge of h(x,y) and thus H(ν,η), the object can be to-
tally recovered. The introduction of the noise transforms
the problem into an ill-posed problem, which is addressed
by many deconvolution algorithms. An example of im-
age deconvolution algorithm is the Lucy-Richardson (LR)
algorithm[10, 11]. It is an iterative converging algorithm
as shown in [12, 13] which assumes noise to be dominated
by Poisson statistics, which is characteristic to the photon
noise. An example of image deconvolution using LR algo-
rithm is shown in [9], where a series of pinholes from 5 µm
to 100 µm has been used to image a 3 GeV electron beam
in a bending magnet with a vertical size σv = 5 µm. The
results of the deconvolution shows that even for a 100 µm
pinhole aperture, the retrieved vertical image size is con-
verging to 5 µm. However, we want to put an emphasis
on the knowledge of the PSF. The restitution of the object
will be very precise but only to the accuracy of the PSF
description. The PSF might be measured, or modeled and
generated numerically as in [9].

Performance of a deconvolution is dependant on the
model of the PSF, but also on the model of the noise. In
the following we will see that for the coded apertures, de-
convolution is necessary to recover the image, and indeed,
the noise in the image plays a role in the uncertainty of the
measured beam size.

CODED APERTURES
The concept of coded aperture has be first introduced

by Dicke [14] and Ables [15]. In this original version,
the aperture was simply a collection of pinholes randomly
distributed. They were used for X-ray and gamma-rays
imaging when no lenses were invented, and in order to in-
crease the flux through a single pinhole camera. Later, new
arrangement were developed with the apparition of URA
[16], and later MURA [17]. Coded apertures are a large
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class of lensless imaging devices which consist in an array
of opaque and transparent elements, which placed between
an illuminated object or a source and an intensity record-
ing device, produce a shadowgram that can be processed
to recover the object from the coded image. URAs have
been applied only recently as an X-ray beam profile diag-
nostics [18–21]. We will see they could provide informa-
tion about beam size and position bunch by bunch and turn
by turn. FZPs also have been used for the measurement of
beam profile and emittance [22] reporting on a 4 µm verti-
cal beam size [23].

URAs, MURAs, HURAs
The particularity of the URAs, MURAs, HURAs coded

apertures is that they are built with the use of a class of
function called pseudo-noise functions. For instance an
URA is built as follow:

The aperture A is divided in a r× s array with r,s prime
numbers and r− s = 2, and each element of the array is ei-
ther transparent A(i, j) = 1 or opaque A(i, j) = 0 following
the rules:

(14)A(i, j) =


0, if i = 0
1, if j = 0, i ̸= 0
1, if Qr(i)Qr( j) = 1
0, if Qr(i)Qr( j) = −1

where the quadratric residue Qr is:

Qr(p) =


1, if∃x ⊂Nand1 ≤ x < r

such that p = modr
(
x2
)

−1, otherwise

With this pattern, the flux transmitted to the detector in
the image plane is 50% of flux that would pass through the
whole aperture area. This can be several orders of magni-
tude compared to the flux transmitted by a pinhole with the
unit cell area A(i, j).

The pattern of the coded aperture is chosen so that the
convolution with the decoding mask is a Dirac function.
For an URA, the decoding function, G can be built as

(15)G(i, j) =

{
1, if A(i, j) = 1
−1, if A(i, j) = 0

This way, retrieving the object from the coded image can
be expressed as:

Ô = I ⊗G = ((O+N)⊗A)⊗G (16)

Here we have introduce the noise (N) on the image. As
suggested by Eq. 16, noise but also diffraction and scatter-
ing [19, 21] may prevent the recovering of the object with
the direct deconvolution, and more advanced deconvolu-
tion or convolution algorithms may be used.

The resolution of an URA can be estimated with the eval-
uation of its Modulation Transfer Function (MTF), which

is the FT of the system PSF. MTF for an URA has been
derived in Eq. (17) of [24]:

(17)MT F[URA] = F (A ⊗ Gδ ⊗ D ⊗ Q)

where F if the FT, A⊗Gδ the system PSF, D the single
element PSF, and Q the detector PSF. It shows that in the
ideal case, the MTF of the URA is equal to the single pin-
hole MTF.

We have briefly described here URA as an example of
coded aperture. However, many more coded aperture ex-
ist and have been designed to further improve the robust-
ness of the object reconstruction. For instance, MURA,
and HURA can be decoded using a unimodular valued cor-
relation inverse G for which the signal to noise becomes
uniform and insensitive to the source structure [17].

Fresnel Zone Plates
From the first FZPs [25] used to produce X-ray images to

nowadays, the techniques for making them have been con-
stantly evolving to produce highly efficient FZPs for hard
X-ray [26]. The main challenges in making FZPs for hard
X-ray comes from the combined necessity to have alter-
nating opaque transparent rings separated by a radius dif-
ference of the order of tens of nm to ensure a very small
diffraction limited spot size together with the large thick-
ness of the opaque material to ensure a high efficiency of
the diffraction orders. The diffraction limited spot, i.e. PSF
of the FZP is of the order of the outer rings radii difference
of the FZP. The nth radius of a FZP is given by:

(18)rn =

√
nλ f +

n2 λ 2

4

where λ is the wavelength at which the FZP is designed,
f is the focal length (of the first diffraction order). Eq. 18
shows FZPs to be highly sensitive to chromatic aberrations.
Using Eq. 18, for 8 keV photon energy (λ = 0.15 nm), f =
0.25 m, and n = 11000, the difference of the outer rings is
of the order of 20 nm.

The diffraction efficiency, taking into account the phase
shift of the absorbing material is given by [27] and for a
perfect FZP

E =

(
1

πq

)2(
1+ e−4π T β

λ −2e−2π T β
λ cos2π

T δ
λ

)
(19)

with β and δ the material index coefficient for absorption
and phase shift across the length of material T . An exam-
ple for gold is given in Fig. 2. It shows that at 2 keV, the
efficiency of the first order diffraction is 23% for a thick-
ness of 500 nm. For the same thickness, it drops to 7% at
8 keV. The height to width aspect ratio structure is in this
case larger than 30. It illustrates the manufacturing difficul-
ties encountered in the production of high resolution hard
X-ray FZP.

Nevertheless, FZPs have been used to measure the beam
profile at ATF-KEK [22]. The system is a combination of
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Figure 2: Diffraction efficiency of a FZP, as given by Eq.
19.

2 FZPs in a telescope assembly which provide a magni-
fication ×20, and a resolution of the order of 0.7µm. The
smallest vertical beam size measured is of the order of 4µm
after suppression of 100 Hz vibration that was causing a
motion blur on the image. One of the remarks to be made
is that the image of the beam (Fig. 10 from [22]) are quite
specular. This is because the number of photons for the
image is small enough to be able to count them. Indeed,
a rough estimate shows that 106 photons/ms illuminate the
FZP assembly, and taking into account 20% efficiency for
each FZPs of the assembly, the number of photons illumi-
nating the camera is approximatively of the order of 104

photons. In their case the illuminated CCD area at FWHM
is ≈ 50×12 pixels, which imposes the use of a highly lin-
ear camera, sensitive to single photons.

COMPOUND REFRACTION LENSES
The first CRLs invented and used [28], where applied

to focus SR X-ray beam. Similarly to FZPs, CRLs are
mainly used for SR X-ray micro and nano-focus experi-
ments rather that beam diagnostics. However, like FZPs,
CRLs can be used to image the SR source offering a simi-
lar resolution, and a larger transmission. As shown in [29],
abberation of a CRL depends on the shape of the lens sur-
face. For parabolic shape, aberration is pronounced and by
far the largest as compared to elliptical shapes or Cartesian
oval shape which appears to be the natural surface shape
solution for a point source. As shown in Fig. 7 of [29], for
large aperture, aberration appears to be significantly larger
than the Airy disk width, which is the PSF of a perfect cir-
cular aperture. This shows that the shape of the surface of
the lens has to be chosen as function of the source. For a
bending magnet source, the specific shape could be found
with the use of Statistical Optics as seen in the above sec-
tion. Beam profile has been measured using CRLs [30], on
a bending magnet SR source, at very high photon energy.
Their expected resolution is supposed to match the beam
resolution with an aperture of 0.450 mm at 4.5 m. However,
at the high photon energies at which the beam is imaged,
scattering may be an issue. Indeed, on the beam images, a

background rises up making additional wings to the beam
profile [30, 31]. Investigation for the source of this back-
ground is still ongoing, and no conclusion whether aber-
ration of the parabolic lens or real scattering is the main
contribution.

DISCUSSION AND CONCLUDING
REMARKS

We have seen that SR sources are becoming more and
more diffraction limited for hard X-ray SR beams, as a re-
sult of small emittances and thus small beam sizes, in the
sub-µm range for the vertical. For the imaging of the source
using large aperture systems, i.e. larger than the natural
opening of SR, is it desirable to have quasi-homogeneous
sources for which Geometrical Optics applies and coin-
cides with the general description from the Statistical Op-
tics. Large aperture systems offer a suitable resolution and
can match the natural resolution offered by the SR beam it-
self. The resolution is certainly a parameter of the problem
to look at in detail, but this is not the only one. We have
seen that most of the larger aperture systems offer enough
resolution to allow µm beam size to be measured. How-
ever, commissioning, cost and operation are other very im-
portant parameters to consider before selecting one or the
other of these possible diagnostics. For the commission-
ing, all direct imaging systems, (FZPs, CRLs, etc.) should
be rather straightforward because the perception of the im-
age matches our representation. In the case of the indi-
rect imaging systems, like the coded aperture where image
processing is required, a large confidence has to be built
in the image processing in order to answer the first ques-
tion that comes after image is acquired: what is the emit-
tance and the coupling? The cost comes next as some of
the systems will need to include a monochromator and oth-
ers not. This is an additional cost to the system and an
additional system to commission too. Also this is an ad-
ditional system that needs to be designed taking into ac-
count the large coherence area of diffraction limited SR.
This will non-doubtably increase the surface tolerance of
the monochromator and thus its cost. Also the addition of a
monochromator constitutes another complete system with
more diagnostics to match the design performance of the
imaging systems that are highly chromatic, and ensure ro-
bustness in operation. Finally, the efficiency of the system
is to be considered too. For the coded apertures, the flux
transmitted is 50% of the total flux of the ’white’ beam.
This makes coded aperture a very sensitive system. As
seen this is a system capable of measuring beam size of
all individual bunches along a train. To match the perfor-
mance, efforts and cost would have to be put on speed of
the data acquisition, but also on computing power for the
image processing.

In summary, none of the systems is ideal, FZPs or CRLs
offer the best resolution and direct imaging, but with a poor
sensitivity and additional system cost. Coded apertures of-
fer enough resolution to measure ultra small beam sizes,
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but require complex deconvolution using large computing
power which is added also to the cost of the system.

We have focussed on large aperture X-ray imaging sys-
tems, but of course there are not the only possible imag-
ing systems to be used for measuring micron size beams.
For instance, a very simple, robust and cost effective imag-
ing system is the X-ray pinhole camera. The PSF width
might be larger than for these large aperture systems, but
after deconvolution, beam sizes of the order of 5 µm have
been measured at Diamond, corresponding to 1 pm.rad ver-
tical emittance. Also the use of interferometry imaging
technique, in the UV-visible, is capable to measure mi-
cron beam sizes whenever Van Cittert Zernike can apply,
i.e. when the source is (quasi)-homogeneous. These sys-
tem are also worth exploring as they can be quite robust,
relatively straightforward measurements and also cost ef-
fective.
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