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Abstract 

The Evaluation of the electron cloud density (ECD) by 
measuring its effects on the propagation of 
electromagnetic signals across portions of the beampipe is 
a widely used technique and the most suited for 
measurements over extended regions. Recent results show 
that in a majority of cases the RF signal transmission 
takes place by coupling to standing waves excited in the 
vacuum chamber, rather than through propagating modes. 
In such an event the effect of a varying cloud density 
results in a simultaneous amplitude, phase and frequency 
modulation of a fixed frequency drive signal. The 
characteristics of the modulation depend not only on the 
cloud density values as a function of time and its special 
distribution, but also on the damping time of the standing 
waves. In this paper we evaluate the relationship between 
measured modulation sidebands amplitude and the 
electron cloud density when cloud and electromagnetic 
resonance rise and fall times are of the same order of 
magnitude, as it is the case in the accelerators where we 
have conducted our experiments. 

INTRODUCTION 
The fundamental principles of the TE wave detection 

method have been described in [1-3]. Essentially, an 
electromagnetic wave is excited at one point and detected 
at another point after it has propagated along the beam 
pipe, usually using existing beam position monitors 
(BPM). The presence of the electron cloud changes the 
propagation characteristics introducing a phase delay 
proportional to the ECD. 

More recently [4] it has been observed that in many 
instances the signal that is transmitted from one BPM to 
another is not due to a propagating wave, but to a standing 
wave corresponding to a vacuum chamber resonance 
excited in the region where the two BPM’s are located. 

The shift in resonant frequency due to the ECD has 
been verified experimentally on Cesr-TA and DANE [5] 

In a previous paper [6] we have presented an analysis of 
the signals detected under such circumstances. Instead of 
a variable delay, resulting in the phase modulation of the 
transmitted signal, simultaneous amplitude, phase and 
frequency modulations are induced when the varying 
ECD changes the resonant frequency of the standing 
wave. 

In our analysis we have limited ourselves to the case of 

resonant frequencies instantaneously changing between 
steady-state values. That is, we assumed that the changes 
in ECD, which in turn cause the resonant frequency of the 
standing wave to change, take place in a time scale much 
shorter than the resonance time constant       2Q0 / 0 , 
where Q0 is the resonance quality factor and 0 its angular 
frequency. We also assumed that the changes in ECD are 
sufficiently spaced so that the transient response 
generated by each change is completely vanished before 
the next change takes place. 

Actual situations encountered in practice are generally 
different from such an idealized model: first of all, 
changes in the ECD take a finite time for either filling the 
pipe with electrons, or dissipating the accumulated 
density. Also, the bunch pattern structure does not 
necessarily present gaps or trains much longer than , so 
that the description using a succession of steady-state 
responses may not be an appropriate one. 

In fact, our measurements on Cesr-TA and DANE 
show that, although the two machines have rather 
different vacuum chamber geometries, their resonances 
near the beampipe cutoff, which are the ones used for the 
ECD measurements, have similar time constants, of the 
order of a few hundreds of nanoseconds (Table1). 

 

Table 1: Standing Waves Typical Parameters 

 Cesr-TA DANE 

Frequency (MHz) 1900 300 

Q0 1000’s 100’s 

 (ns) 100’s 100’s 

 
As the rise and fall times of the ECD are concerned, we 

have observed that the formers are related primarily to the 
bunch train structure, i.e. it takes up to a few 10’s of 
bunches to reach a saturation level and depending on the 
particular bunch spacing that means the ECD reaches a 
constant value in the space of several tens up to a few 
hundreds of nanoseconds. The decay time of the cloud has 
been observed with localized measurements using 
shielded pickups [7] and estimated of the order of a few 
hundreds of nanoseconds. Since the beampipe size and 
material are the main factors in determining the cloud 
decay time, it wouldn’t be farfetched to assume that these 
results are representative of the ECD decay in a 
substantial number of accelerators. 

These measurements show that ECD changes take place 
on the same timescale of the transients they induce and 
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therefore the analytical treatment presented in [6] is best 
suited for application to long bunch trains and long gaps, 
in large rings. 

A first approach to including the effects of the finite 
time constant of the standing waves used in the ECD 
measurement is given in [8-9], where a transfer function 
for the beampipe response is introduced, corresponding to 
an exponentially decaying impulse response with a 
400÷500 ns time constant. Such a method agrees quite 
well with the experimental data in the case of both 
frequency domain measurements, and direct phase 
measurements in the time domain. Furthermore, the 
beampipe response time constant value which best fits the 
experimental data coincides with the actual standing wave 
time constant, as measured experimentally. 

In this paper we extend the analytical treatment of the 
signal modulation from changing resonant frequency 
presented in [6] to the case of a slowly varying ECD. 

ANALYTICAL EXPRESSION OF THE 
RECEIVED SIGNAL 

We assume to have a fixed sinusoidal excitation signal 
of amplitude Ax, and angular frequency x. It excites a 
standing wave of frequency 0, when no ECD is present, 
and a fixed quality factor Q0 (this is true for high enough 
values of Q0). 

In the presence of a time varying ECD n(t), the resonant 
frequency also become a function of time given by: 

    
 r (t)  0 

(18)2

2

n(t)
 0

   (1) 

A steady-state response is reached after the ECD remains 
constant for a few decay times and can be written as: 

    s(t)  A0 sin( x t 0)   (2) 

where amplitude and phase depend on the difference 
between x and r: 

    

A0 
AxC

 x
2  r

2 2   x
2 r

2

Q0
2

  (3) 

and 

    
0  tan1 Q0

 x
2  r

2

 x r









   (4) 

For a change in the resonant frequency at time t = t1, 
Eq.(2) becomes 

  

s(t  t1)  A1 sin( x t 1) 

               A1e
(t t1 ) / sin 1t  ( x 1)t1 1 

              + A0e(t t1 ) / sin 1t  ( x 1)t1 0 
 (5) 

where for the sake of brevity we have indicated r(t1) 
with 1 and A1 and 1 are the quantities in Eqs.(3) and (4) 
calculated for r=1. The two exponentially decaying 
terms are the transient response generated by the ECD 
change. 

When the resonant frequency changes again at t = t2 > t1 
Eq.(5) becomes: 

  

s(t  t2)  A2 sin( x t 2) 

               A2e(t t2 ) / sin  2t  ( x  2)t2 2 
              + A1e

(t t2 ) / sin 2t  ( x  2)t2 1 
A1e

(t t1 ) / sin  2t  (1 2)t2  ( x 1)t1 1 
A0e(t t1 ) / sin  2t  (1 2)t2  ( x 1)t1 0 

(6) 

and a new transient is generated by the new frequency 
change. 

For a cyclical transition between two ECD, and 
therefore two resonant frequencies, we can rewrite Eq.(6) 
with A2=A0, 2=0, and 2=0. We can also assume that 

   x  0 0  0 in order to make the expression 
simpler (on resonance excitation) and obtain: 

  

s(t  t2)  A0 sin( 0t) 

               A0e(t t2 ) / sin( 0t) 

              + A1e
(t t2 ) / sin( 0t 1) 

A1e
(t t1 ) / sin  0t  (1 0)(t2  t1) 1 

 A0e(t t1 ) / sin  0t  (1 0)(t2  t1)1 

(7) 

This can be further simplified assuming that A0≈A1, which 
is certainly true for small frequency changes around the 
resonant frequency (i.e. small changes in n(t)). We also 
can write  1  0   and   t1  t2 / 2 t  and write 

  

s(t  t2)  A0 sin( 0t) 
               e(t2t ) / cos( 0t 1 / 2)(1 / 2)

              e(tt ) / cos( 0t t 1 / 2)(1 / 2)
 (8) 

which represents the response measured when the 
resonance is at  =0. When it is at  =1 when can write 
the following expression: 
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s(t  t1)  A0 sin( 0t 1) 
               e(t2t ) / cos(1t 1 / 2)(1 / 2)

              e(tt ) / cos(1t t 1 / 2)(1 / 2)
 (9) 

and     1  2Q0 / 0 . 

PHASE MODULATION 
From the comparison of Eqs.(8) and (9) it is possible to 

calculate the phase modulation index. A further 
simplification comes from assuming that the term 

    t 1 / 2, which is true if t << . In such case 
Eqs.(8) and (9) can be rewritten respectively as 

    

s(t  t2)  A0 sin( 0t) 
         e(tt ) / cos( 0t 1 / 2)

 

(10) 

and 

    

s(t  t1)  A0 sin( 0t 1) 
         e(tt ) / cos(1t 1 / 2)

 

(11) 

In Eqs.(10) and (11) exponentially decaying terms are 
added to the steady-state responses. These terms vanish if 
the resonance damping time is short enough, or if the time 

derivative of the ECD change 
  

t


dne
dt

 is small enough. 

When neither condition is verified, the transient part of 
the response contains a phase difference proportional to 
 since   1  0  . This term can become dominant 

over the steady-state response if the factor  >> 1. 

CONCLUSIONS 
In this paper we have calculated the RF signal 

generated by the excitation with a fixed frequency 
sinusoid of a standing wave in an accelerator vacuum 
chamber, when its resonant frequency shifts under the 
effect of a varying ECD. We have considered time 
constants longer than the ECD characteristic times, so that 
transients are always present in the response. The phase 
modulation index calculated when the ECD is cycling 
between two values can be dominated by the transient part 
of the response if the time derivative of the ECD is large 
enough. 
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