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Abstract

A change in electron cloud (EC) density will change

the resonant frequency of a section of beam-pipe. With

a fixed drive frequency, the resulting dynamic phase shift

across the resonant section will include the convolution of

the frequency shift with the impulse response of the reso-

nance. The effect of the convolution on the calculated mod-

ulation sidebands is in agreement with measured data, in-

cluding the absolute value of the EC density obtained from

ECLOUD simulations. These measurements were made at

the Cornell Electron Storage Ring (CESR) which has been

reconfigured as a test accelerator (CESRTA) with positron

or electron beam energies ranging from 2 GeV to 5 GeV.

INTRODUCTION

The electron cloud (EC) density in an accelerator can

be measured by coupling microwaves in and out of the

beam-pipe, typically using beam position monitor (BPM)

buttons. In contrast to TE wave transmission measure-

ments [1, 2], TE wave resonance measurements rely on

the resonant response that is produced by changes in beam-

pipe geometry [3, 4]. Changes in geometry such tapers and

longitudinal slots generate reflections of the TE wave and

result in resonant sections of pipe that can be less than a

meter in length.

The presence of the electron cloud created by a train of

bunches will shift the resonant frequency of the beam-pipe.

The decay of the electron cloud is short compared to the

2562 ns revolution time of the beam at CESRTA, so a short

train of bunches will produce a periodic modulation of the

resonant frequency. In order to calculate the EC density, the

effect of this resonant frequency modulation on measured

signals needs to be understood.

A fixed excitation frequency is used that is close to one

of the resonant frequencies of the beam-pipe. Figure 1

shows that a shift in the resonant frequency produces a shift

in both the equilibrium amplitude and phase of the response

signal. If the rate of change is slow compared to the damp-

ing time of the resonance, the phase shift will be propor-

tional to the frequency shift. For more rapid changes in

resonant frequency, the phase shift will not follow the fre-

quency changes exactly, but is convolved with the impulse

response of the resonance.
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Figure 1: Equilibrium amplitude and phase shifts with a

fixed drive frequency and a changing resonant frequency.

CALCULATING SPECTRA

The resonant frequency shift produced by a low density

plasma in the absence of magnetic field is given by Eq. 1

where for a uniform plasma the (constant) EC density ne

can be brought outside of the integral over the resonant vol-

ume.

∆ω

ω
≈ e2

2ε0meω2

∫

V
neE

2dV
∫

V
E2dV

→ e2

2ε0meω2
ne

≈ 1.59× 103

ω2
ne. (1)

Near the resonance ω1, the equilibrium phase shift φ1

across a resonator driven at frequency ω is given by Eq. 2.

For small shifts in the resonant frequency ∆ω near reso-

nance, the change in equilibrium phase is given by Eq. 3.

The change in equilibrium amplitude should be small close

to resonance unless the modulation is very large [5].

φ1 = tan−1

[

Q
ω2
1 − ω2

ω1ω

]

(2)

∆φ ≈ 2Q
∆ω

ω
(3)

Combining equations 1 and 3 and values of physical con-

stants, the equilibrium phase shift due to an EC density ne

is

∆φ ≈ 2Q
1.59× 103

ω2
ne (4)

If the rate of change in EC density ne(t) is rapid com-

pared to the damping time of the resonance, the dynamic

phase shift ∆Φ(t) is obtained by convolving the equilib-

rium phase shift with the impulse response of the reso-

nance, exp(-α t), where α is the the damping rate of the

resonance and τ = 1/α its damping time.
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∆Φ(t) = 2Q
1.59× 103

ω2

∫ t

−∞

ne(ξ)e
(t−ξ)/τdξ (5)

If ∆Φ(t) is a periodic function with frequency ωT =
2π/T , it can be written as a complex Fourier series

∆Φ(t) =

+∞
∑

m=−∞

cm exp(−jmωT t) (6)

where

cm =
1

T

∫ T

0

∆Φ(t) exp(−jmωT t)dt (7)

A sine wave (carrier) of frequency ω that is phase modu-

lated at a frequency ωT with depth M≪1 can be expressed

as

g(t) = sin[ωt+M cos(ωT t)]

≈ sin(ωt)

+
M

2
[cos(ω + ωT )t+ cos(ω − ωT )t] . (8)

This will be true for each of the frequencies in the

Fourier series where Cm is the magnitude of |cm|+ |c−m|.

g(t) =

sin [ωt+∆Φ(t)]

sin

[

ωt+

+∞
∑

m=1

Cm cos(mωT t)

]

≈ sin(ωt)

+

+∞
∑

m=1

Cm

2
[cos(ω + ωT )t+ cos(ω − ωT )t] (9)

So the ratio of the amplitude of each of the sidebands to

the amplitude of the carrier is |Cm/2| = |cm|, expressed as

decibels below the carrier: dBc = 20log|Cm/2|.

Example with Rectangular EC Density

If the EC density has a fixed value ne from 0 ≤ t ≤ t0
and is zero otherwise (as sketched in Fig. 1), the dynamic

phase shift (convolving ne(t) with exp(−αt) ) would be

∆Φ(t) = 2Q 1.59×103

ω2 ne(1− e−t/τ ) 0 ≤ t ≤ t0

= 2Q 1.59×103

ω2 ne(1− e−t0/τ )e−t/τ t ≥ t0.(10)

This function is periodic with frequency ωT = 2π/T
where T is the revolution period of the storage ring. The

Fourier transform of ∆Φ gives complex coefficients with

the magnitudes given in Eq. 11 and shown in Fig. 2

cm = sin(
mωT t0

2
)
1

π

[

1

m
− mω2

T

(α2 + (mωT )2)

−j
αωT

(α2 + (mωT )2)

]

exp j
mωT t0

2
. (11)
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Figure 2: A 126 ns rectangular EC density ne(t) (top) is

used to calculate the dynamic phase shift ∆Φ(t) (middle)

that is then Fourier transformed to obtain the sideband co-

efficients Cn (bottom) using a MATLAB script.

In the limit of a high damping rate α, Eq. 11 gives the

coefficients that would be obtained by the Fourier trans-

form of the rectangular EC density without convolution.

We used this approximation in work published before 2013

where only the first upper and lower sidebands (m = 1)

were used. The correction to the first sidebands that in-

cludes convolution would be an increased EC density of√
2 times our previously published values in addition to

any errors in choosing an EC density duration.

MEASUREMENTS AT CESRTA

The analysis that follows will focus on a roughly 3 me-

ter long resonant section of aluminum chamber near the

quadrupole at 15E in CESRTA. Longitudinal slots at the ion

pump ports generate reflections for TE waves and a num-

ber of resonances as shown in Fig. 3. The first resonance at

about 1.88 GHz has a Q of about 3000 (τ = 500 ns). Phase

modulation sidebands appear at multiples of the beam revo-

lution frequency (390 kHz). Ten upper and lower sidebands

of the first resonance were recorded.

10-Bunch Data

A 10-bunch train of 5.3 GeV positrons with 14 ns

spacing was injected to 64 mA total current (about 1011

positrons/bunch). The sideband amplitudes are plotted in

Fig. 4, where this data is compared to different calculations

of the expected amplitudes. First, if the EC density is taken

to be rectangular with an amplitude of 1.5× 1013m−3 hav-

ing a duration equal to the length of the train (126 ns) and

the phase modulation was also rectangular (without convo-

lution), the calculated sideband amplitudes would follow
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Figure 3: Resonances in the Al beam-pipe at 15E are gen-

erated between longitudinal slots that connect ion pumps to

the beam vacuum space.

the envelope of the green dashed line of Fig. 4. This is a

plot of the magnitude of Eq. 11 in the limit of large α. If

the phase modulation calculation includes convolution as in

Fig. 2, the result would be the cyan dashed line that appears

just above the data in Fig. 4.

Figure 4: 10-bunch data (squares) are compared with cal-

culated envelopes of sideband amplitudes. The calculation

based on convolved rectangular density (cyan dashed line)

is in fair agreement with the measurement. The envelope

obtained using the ECLOUD simulation is the solid orange

line that (nearly) coincides with the data points.

One of the uncertainties in these calculations is the du-

ration of the EC density. The recorded sidebands contain

information about this duration, but the spectrum is domi-

nated by the response time of the resonance, which is long

compared to the changes in EC density. An alternative is

to use independent measurements and simulations of this

time evolution.

The simulation code ECLOUD [6, 7] has been used

extensively at CESRTA in understanding signals from

shielded pickups (SPU) that sample the flux of cloud elec-

trons onto the inner surface of the beam-pipe [8, 9]. Sim-

ulation parameters as well as a model of the SPU are ad-

justed so that the simulation correctly predicts the signal

recorded at the SPU. There is an SPU detector within the

resonant section of the TE wave measurement that can be

seen on the right side of Fig. 3.

The upper plot of Fig. 5 shows an ECLOUD sim-

ulation of a 10-bunch train at 60 mA total current

(1011 positrons/bunch. This simulation along with the

model for the SPU is in agreement with the measurement

made with this SPU. This same simulation of the EC den-

sity was used to calculate the expected sidebands for the

10-bunch TE wave measurement. As shown in Fig. 5, the

EC density is convolved with the impulse response of the

resonance and the FFT gives the coefficients Cn using a

MATLAB [10] script. The resulting sideband envelope is

shown as the solid orange lines of Fig. 4 that nearly coin-

cide with the data points.
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Figure 5: An ECLOUD simulation (top) for a 10-bunch

positron train with 1011 positrons/bunch is convolved

with the impulse response of the beam-pipe resonance

to calculate the expected sideband amplitudes dBc =
20log|Cn/2|.

1-Bunch Data

Multiple sideband data was also taken with a sin-

gle bunch of 8 mA 5.3 GeV positrons (1.28 ×
1011 positrons/bunch) . For calculation of the expected

sidebands, an ECLOUD simulation was used. In this case

the matching simulation and SPU data were made at a cur-

rent of 3 mA (4.8 × 1010 positrons/bunch). Previous mea-

surements of sideband magnitude versus current for a sin-

gle bunch have been reasonably linear, so we assumed a lin-

ear scaling of the sidebands. The result is shown in Fig. 6

and the comparison of this calculated sideband envelope

with the measured data is shown in Fig. 7.

The calculated values are lower than the data by about

6 dB. This is probably explained by the following argu-

ment. For the 1-bunch data, the EC density will be more

or less proportional to the amount of synchrotron light at

each longitudinal position. The ECLOUD simulation was

made for the location of the SPU, which is near the end

of the resonant TE wave section as shown in Fig. 3. The

synchrotron light in this section decreases by a factor of

3, being smallest at the end nearest to the SPU. In contrast,
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Figure 6: 1-bunch ECLOUD simulation (top) is used to

calculate sideband coefficients.

Figure 7: 1-bunch data at 8 mA (squares) with scaled sim-

ulated sideband amplitudes (solid lines).

for the 10-bunch data at 6 mA/bunch the EC density is satu-

rated at the SPU and the increasing amount of synchrotron

light in the other parts of the chamber do not result in a

significantly higher EC density there. So for the 10-bunch

data, the EC density should be more nearly uniform over

the resonant section of beam-pipe.

SUMMARY

Our previous work used the approximation of a rectan-

gular EC density without convolution and focused on the

first sidebands of the carrier. Even if the EC duration were

chosen correctly, this would result in an under-estimate of

the EC density by
√
2. Use of a rectangular EC density

that is convolved with the impulse response of the beam-

pipe gives an envelope of multiple sidebands that is in fair

agreement with measured data for a 10-bunch train. Use of

the simulated EC density gives further improvement in the

match of predicted to measured sidebands, including the

absolute EC density.

Under the same conditions, the agreement of two com-

pletely independent measurements of EC density – from

TE wave resonances and from shielded pickups – gives in-

creased confidence in the measurement techniques and in

the validity of the ECLOUD simulations and modeling.
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