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LARGE MOMENTUM SPREAD

M. Olvegard and V. Ziemann, Uppsala University, Sweden˚ ∗

Abstract
Commonly used beam diagnostic methods, such as spec-

trometry or emittance measurements through quadrupole

scans, are based on the assumption that the beam momen-

tum spread is very small. This assumption is sometimes not

fulfilled, which leads to a systematic misinterpretation of

the measurement. We have studied this effect and present

algorithms that consider the full momentum distribution

and offer correct ways of analyzing the profile measure-

ments.

INTRODUCTION
In modern particle accelerators, like the Compact Linear

Collider, CLIC [1], or plasma wakefield accelerators [2],

the beam can have a significant momentum spread on the

order of tens of percent. Conventional diagnostic methods,

on the other hand, often assume a beam with no or very

small momentum spread [3], which may lead to a system-

atic misinterpretation of the measurements. For example,

emittance measurements based on quadrupole scan or mul-

tiple screen measurements, and momentum profile mea-

surements through spectrometry, rely on determining the

beam size, while the evolution of the beam envelope de-

pends on the beam momentum distribution. We have stud-

ied the systematic errors that arise and developed novel al-

gorithms to correctly analyze these measurements for arbi-

trary momentum distributions. As an application we con-

sider the CLIC drive beam decelerator, where extraction

of up to 90% of the kinetic energy leads to a very large

momentum spread. We study a measurement of the time-

resolved momentum distribution, based on sweeping the

beam in a circular pattern to determine the momentum dis-

tribution and recording the beam size on a screen using

optical transition radiation. We present the algorithm to

extract the time-resolved momentum distribution, together

with simulation results to prove its applicability.

SPECTROMETRY
Consider the spectrometer line depicted in Fig. 1. An

incoming particle with momentum deviation δ = Δp/p0,

where the index 0 refers to an on-momentum particle, is

deflected an angle ϕ(δ) by a dipole magnet and detected

on a screen or a similar profile monitor at the distance L
from the center of the magnet. In the plane of deflection

the particle coordinate on the screen is given by

X = Lϕ(δ) =
Lϕ0

1 + δ
. (1)
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The incoming momentum distribution ψ(δ) is obtained by

measuring the spatial distribution Ψ(X) on a screen or sim-

ilar profile monitor in the spectrometer and then translat-

ing back to momentum through Eq. (1). If the momentum

spread is small, i.e. if δ << 1, then the linear approxi-

mation X = Lϕ0/(1 + δ) ≈ Lϕ0(1 − δ) can be applied

and the dispersion function D = Lϕ0 can be used for the

transformation between momentum distribution and spatial

distribution. Here, we look at cases where δ is not small,

which means that the full nonlinear relation in Eq. (1) must

be used.

Ψ(X)

X

ψ(δ)
ϕ(δ)

e− L
��������� ��	
��

Figure 1: Schematic of a spectrometer line and associated

variables.

Now we consider an arbitrary beam momentum distri-

bution ψ(δ) and calculate the corresponding spatial distri-

bution on the spectrometer screen. The particle density at

a given position X is obtained by summing over all mo-

menta, weighted by the momentum distribution, and make

use of the relation in Eq. (1). We obtain

Ψ(X) =

∫
ψ(δ)δD

(
X − Lϕ0

1 + δ

)
dδ

=
Lϕ0

X2
Ψ

(
Lϕ0 −X

X

)
(2)

where δD denotes the Dirac delta function. The factor

Lϕ0/X
2 appears in the change of coordinate in the inte-

gration. At the singularity X → 0, which is equivalent to

infinite momentum, the particle density is enhanced. An

example is shown in Fig. 2 where three Gaussian momen-

tum distributions

ψ(δ) =
1√
2πΔ

exp

(
− δ2

2Δ2

)
(3)

with rms width Δ = 0.05, 0.10, 0.15 have been translated

into spatial distributions in a spectrometer with Lϕ0 =
0.3m. As the momentum spread grows the Gaussian gets

deformed. If the linear approximation is used for extract-

ing the momentum distribution the profile is misinterpreted

towards a higher average momentum and a smaller momen-

tum spread. For more details, see Ref. [4].
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Figure 2: Important to note here is that if the screen dis-

tribution is converted to momentum distribution using the

linear approximation the result will be higher average mo-

mentum and a smaller spread than what is true.

However, if the momentum spread is known to be large

we can correctly extract momentum information from the

spatial profile Ψ(X) through the inverse procedure

ψ(δ) =

∫
Ψ(X)δD

(
δ − Lϕ0 −X

X

)
dδ

=
Lϕ0

(1 + δ)2
ψ

(
Lϕ0

1 + δ

)
. (4)

Note that this is an analytical derivation of a non-

perturbative method to analyze spectrometer measurements

which is valid for arbitrary momentum distributions. Now

that we have shown how to correctly measure the momen-

tum distribution through spectrometry we will go into how

the large momentum spread affects other beam diagnostic

methods.

EMITTANCE MEASUREMENTS
We consider a measurement of the beam Twiss pa-

rameters through a quadrupole scan measurement. In a

quadrupole scan the transverse beam size is measured dur-

ing the systematic shift of the strength of an upstream lo-

cated quadrupole magnet. If R is the transfer matrix of the

beam line from the quadrupole to the beam size measure-

ment the beam size Σ can be expressed as

Σ2 = R2
11σ11 + 2R11R12σ12 +R2

12σ22 (5)

where σij are the incoming beam parameters that are to be

determined. The transfer matrix elements Rij depend on

the focusing strength k of the quadrupole magnet, and with

several measurements, for different values of k, a system

of equations linear in σij is built up. We determine the

incoming parameters by solving this system of equations

and calculate the Twiss parameters through

ε2 = σ11σ22 − σ2
12 , β =

σ11
ε

, α = −σ12
ε
. (6)

We note that the focal strength k varies with particle mo-

mentum so that the beam size Σ, and its variation with

the quadrupole magnet setting, thus depend on the beam

momentum distribution. In order to obtain the beam size

resulting from the momentum distribution we need to inte-

grate Eq. (5) over all momenta, weighted by the momentum

distribution function ψ(δ)

Σ2 =

∫
Σ(δ)2ψ(δ)dδ = Aσ11 +Bσ12 + Cσ22 . (7)

The factors A, B and C in the equation system are thus

modified as the momentum spread grows and consequently

the extracted parameters σij will differ as well. An illustra-

tion of this chromatic effect is presented in Fig. 3 where the

beam sizes during a quadrupole scan have been computed

for a monochromatic beam and a beam with Gaussian mo-

mentum distribution with rms spread 0.1 and 0.2. More

details can be found in Ref. [5].
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Figure 3: Beam sizes during a synthetic quadrupole scan

for a monochromatic beam and a beam with Gaussian mo-

mentum distribution of rms width 0.1 and 0.2.

In Ref. [6] we have studied in detail the effect of chro-

maticity on quadrupole scan emittance measurements and

offer an algorithm for analyzing quadrupole scan mea-

surements that takes the momentum spread into account.

It is instructive to use the thin-lens approximation of the

quadrupole magnets. In the algorithm we have chosen a

beamline model with two quadrupole magnets separated by

a drift, and followed by another drift and a beam size mea-

surement device. For simplicity, we let the strength of the

second quadrupole be fixed while the strength of the first

quadrupole is varied. The matrix elements Rij will then be

a function of the focal length f = 1/(kl) where k is the

strength and l the effective length of the magnet.

We introduce the momentum dependence by f = (1 +
δ)f0 with f0 being the focal length for a given magnet set-

ting corresponding to a particle with momentum p0. Writ-

ing R2
11, R11R12 and R2

12 explicitly we see that they can

be separated into terms of inverse powers of f , up to the

fourth order. As we perform the integration in Eq. (7) we

note that, with the stated parametrization of f , the momen-

tum dependence can be isolated in integrals of the form

In =

∫
ψ(δ)

(1 + δ)n
dδ n = 1, 2, 3, 4 . (8)
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These integrals can be computed numerically for almost

any momentum distribution ψ. That enables us to com-

pute new matrix elements A, B, C that correspond to the

evolution of the beam envelope for that given momentum

distribution. These adjusted matrix elements are new fac-

tors in the system of equations which can then be solved

and the incoming Twiss parameters determined correctly.

Figure 4 shows the result of a synthetic quadrupole scan

made on a beam with Gaussian momentum profile of in-

creasing rms width Δ. The Twiss parameters extracted us-

ing the conventional monochromatic model diverge signif-

icantly from the real Twiss parameters as the momentum

spread grows. The input parameters are recovered if the

momentum spread is taken into account in the analysis, as

described above.
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Figure 4: Twiss parameters extracted from a synthetic

quadrupole scan using the monochromatic model. As the

rms momentum spread Δ increases the extracted values di-

verge from the true values.

The beam emittance and Twiss parameters can also be

extracted from a multiple-screen measurement. In the

multiple-screen method the beamline optics is fixed and

the beam size is measured in at least three different loca-

tions. Similarly to the quadrupole scan the method results

in a system of equations in σij with a different transfer ma-

trix R for every screen. Also the multiple-screen method

is subject to chromatic effects, which we have studied and

described in Ref. [6].

We have described how to correctly analyze both spec-

trometer measurements and emittance measurements in the

presence of large momentum spread. This will be of utmost

importance in the CLIC drive beam decelerator where ex-

traction of up 90% of the initial energy leaves the beam

with a highly asymmetric momentum profile with a very

large spread.

THE POST-PETS LINE
In the CLIC drive beam decelerator we want to ac-

cess the momentum profile along each bunch train after

the power extraction and transfer structures (PETS). For

this purpose we suggest the Post-PETS line; a diagnos-

tic section consisting of a fast sweeping magnet and an

OTR screen. The magnet should deflect the beam in two

transverse dimensions simultaneously and steer it onto the

screen as a Lissajous figure. We assume that the magnet

can be cycled in a way such that the particle coordinates on

the screen are

X =
Lϕ0 cos(2πτ)

1 + δ
, Y =

Lϕ0 sin(2πτ)

1 + δ
(9)

with the arrival time τ = t/T and T being the cycle pe-

riod of the magnetic deflection. With a period on the order

of 300 ns the bunch train is sprayed on the screen along a

circle, but with the head of the bunch train well separated

from the tail. Similarly to Eq. (2) we can calculate the two-

dimensional spatial distribution Ψ(X,Y ) on the screen by

integrating over time and momentum weighted by the mo-

mentum distribution in time ψ(τ, δ). The result is

Ψ(X,Y ) =
Lϕ0

2π

1

(X2 + Y 2)3/2
ψ (τ(X,Y ), δ(X,Y ))

(10)

with

τ(X,Y ) =
1

2π
arctan

(
Y

X

)
(11)

δ(X,Y ) =
Lϕ0√
X2 + Y 2

− 1 . (12)

In the conversion from one two-dimensional parameter

space to another in Eq. (10) we use the Jacobi determinant

which results in the scaling factor in front of ψ. Note that

the momentum variable is now encoded in the radial direc-

tion on the screen, while the time along the bunch train lies

in the angle with a reference axis. In this way the two vari-

ables are completely separated in a way that is not possible

with a linearly rising magnetic deflection in one direction.

An example of this is shown in Fig. 5 where the momentum

distribution in the CLIC decelerator has been converted

into spatial distribution for different dispersions D, corre-

sponding to different points in time along the bunch train.

The large spread leads to overlapping of the late bunches

with the early bunches [4].

In order to extract the time-resolved momentum distri-

bution from the spectrometer measurement we need the in-

verse procedure, which reads

ψ(τ, δ) =
2π (Lϕ0)

2

(1 + δ)3
Ψ(X(τ, δ), Y (τ, δ)) , (13)

with X(τ, δ) and Y (τ, δ) as defined in Eq. (9).

Using these analytical transformations we investigate

what the decelerated CLIC drive beam would look like in

the Post-PETS Line. We use a momentum distribution ob-

tained with PLACET [7], presented in Ref. [6] (Fig. 7). We

use the peak energy of 240 MeV as a reference energy and

ignore the high-energy transient, implying that the value of

δ will vary between 0 and 4. We further let the momentum

distribution be constant along the 240 ns bunch train and

choose a sweeping period of 300 ns. The initial momentum
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Figure 5: The momentum distribution in the CLIC deceler-

ator converted into spatial distribution for different disper-

sions D.

distribution over time is presented in Fig. 6. With L = 5m

and ϕ0 = 1.5mrad the beam distribution will appear on the

screen as in Fig. 7. The increase in intensity close to the

center of the screen appears because of the singularity in

the scaling factor from the Jacobi determinant, which was

also pointed out in Eq. (2) for the one-dimensional case.
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Figure 6: Two-dimensional momentum distribution.

The momentum distribution along the bunch train can

be extracted from the spatial distribution in Fig. 7 using

Eq. (13) and thus the distribution in Fig. 6 is recovered.

A non-zero emittance will appear as a smearing of the

spectrometer image. If the intrinsic beam size is known

it should be possible to correct for this through a two-

dimensional deconvolution with the geometric beam pro-

file. Since that is not a trivial procedure different image

processing techniques have been envisioned for this step

[4]. In the CLIC case, however, the intrinsic beam size is

negligible compared to the beam size due to momentum

spread.

CONCLUSIONS
Some standard beam diagnostic methods assume a very

small beam momentum spread, which is not always a
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Figure 7: The momentum distribution in Fig. 6 projected

on a screen with L = 5m and ϕ0 = 1.5mrad.

valid assumption. We have investigated how large momen-

tum spread leads to systematic misinterpretations of profile

measurements, with the CLIC drive beam decelerator in

mind. Furthermore, we have presented a non-perturbative

method to analyze spectrometer measurements, valid for

arbitrary momentum distributions. We have developed

an algorithm to correctly analyze emittance measurements

through quadrupole scans which take the full momentum

distribution and chromatic effects into account. For the

CLIC drive beam decelerator we propose the post-PETS

line, which relies on a fast sweeping magnet that deflects

the beam in the two transverse directions, in a circular mo-

tion onto an OTR screen. In this way the momentum dis-

tribution can be read out along every bunch train from the

particle density in the radial direction and the angular di-

rection.
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