Author: Zummack, F.
Paper Title Page
MOPC32 Development Status of Optical Synchronization for the European XFEL 135
  • C. Sydlo, M.K. Czwalinna, M. Felber, C. Gerth, T. Lamb, H. Schlarb, S. Schulz, F. Zummack
    DESY, Hamburg, Germany
  • S. Jabłoński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  Precise timing synchronization on the femtosecond timescale is crucial for time resolved experiments at modern free-electron lasers (FELs) like FLASH and the upcoming European XFEL. The required precision can only be achieved by a laser-based synchronization system. The pulsed laser-based scheme at FLASH, based on the distribution of femtosecond laser pulses over actively stabilized optical fibers, has evolved over the years from a prototype setup to a mature and reliable system. At the same time, the present implementation serves as prototype for the synchronization infrastructure at the European XFEL. Due to a factor of ten increase of the length of the accelerator and an increased number of timing-critical subsystems, new challenges arise. This paper reports on the current development progress of the XFEL optical synchronization, discusses major complications and their solutions.  
MOPC33 Status of the Fiber Link Stabilization Units at FLASH 139
  • F. Zummack, M.K. Czwalinna, M. Felber, T. Lamb, H. Schlarb, S. Schulz, C. Sydlo
    DESY, Hamburg, Germany
  • S. Jabłoński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  State-of-the-art X-ray photon science with modern free-electron lasers (FEL) like FLASH and the upcoming European X-ray Free-Electron Laser Facility (XFEL) requires timing with femtosecond accuracy. For this purpose a sophisticated pulsed optical synchronization system distributes precise timing via length-stabilized fiber links throughout the entire FEL. Stations to be synchronized comprise bunch arrival time monitors, RF stations and optical cross-correlators for external lasers. The different requirements of all those stations have to be met by one optical link-stabilization-unit (LSU) design, compensating drifts and jitter in the distribution system down to a fs-level. Five years of LSU operation at FLASH have led to numerous enhancements resulting in an elaborate system. This paper presents these enhancements, their impact on synchronization performance and the latest state of the LSUs.  
TUPC33 Femtosecond Stable Laser-to-RF Phase Detection for Optical Synchronization Systems 447
  • T. Lamb, M.K. Czwalinna, M. Felber, C. Gerth, H. Schlarb, S. Schulz, C. Sydlo, M. Titberidze, F. Zummack
    DESY, Hamburg, Germany
  • E. Janas
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • J. Szewiński
    NCBJ, Świerk/Otwock, Poland
  Optical reference distributions have become an indispensable asset for femtosecond precision synchronization of free-electron lasers. At FLASH and for the future European XFEL, laser pulses are distributed over large distances in round-trip time stabilized fibers to all critical facility sub-systems. Novel Laser-to-RF phase detectors will be used to provide ultra phase stable and long-term drift free microwave signals for the accelerator RF controls. In this paper, we present the recent progress on the design of a fully integrated and engineered version of the L2RF phase detector, together with first experimental results demonstrating so-far unrivaled performance.  
poster icon Poster TUPC33 [18.910 MB]  
WEPC32 Past, Present and Future Aspects of Laser-Based Synchronization at FLASH 753
  • S. Schulz, M. Bousonville, M.K. Czwalinna, M. Felber, M. Heuer, T. Lamb, J. Müller, P. Peier, S. Ruzin, H. Schlarb, B. Steffen, C. Sydlo, F. Zummack
    DESY, Hamburg, Germany
  • T. Kozak, P. Predki
    TUL-DMCS, Łódź, Poland
  • A. Kuhl
    Uni HH, Hamburg, Germany
  Free-electron lasers, like FLASH and the upcoming European XFEL, are capable of producing XUV and X-ray pulses of a few femtoseconds duration. For time-resolved pump-probe experiments and the externally seeded operation mode it is crucial not only to stabilize the arrival time of the electron bunches, but also to achieve a synchronization accuracy of external lasers on the same timescale. This can only be realized with a laser-based synchronization infrastructure. At FLASH, a periodic femtosecond laser pulse train is transmitted over actively stabilized optical fibers to the critical subsystems. In this paper we report on the present status and performance of the system, as well as its imminent upgrades and new installations. These include the connection of FLASH2, electron bunch arrival time monitors for low charges, a new master laser pulse distribution scheme, all-optical synchronization of the pump-probe laser and arrival time measurements of the UV pulses on the e-gun photocathode. Along with the coming connection of the acceleration modules to the master laser and the switch of the low-level hardware to the uTCA platform, an outlook to improved feedback strategies is given.