Author: Vilcins, S.
Paper Title Page
MOBL3 Electron Bunch Diagnostic at the Upgraded ELBE Accelerator: Status and Challenges 23
 
  • M. Kuntzsch, S. Findeisen, M. Gensch, B.W. Green, J. Hauser, S. Kovalev, U. Lehnert, P. Michel, F. Röser, Ch. Schneider, R. Schurig
    HZDR, Dresden, Germany
  • A. Al-Shemmary, M. Bousonville, M.K. Czwalinna, T. Golz, H. Schlarb, B. Schmidt, S. Schulz, N. Stojanovic, S. Vilcins
    DESY, Hamburg, Germany
  • E. Hass
    Uni HH, Hamburg, Germany
 
  Within the ELBE upgrade towards a Center for High Power Radiation Sources (HSQ), a mono energetic positron, a liquid lead photo neutron source and two new THz sources have been installed at the superconducting electron linac at ELBE. A variety of established as well as newly developed electron beam diagnostics were installed and tested. In this paper we want to present first results achieved with the currently existing prototype beam arrival time and bunch compression monitors (BAM, BCM) as well as one versatile EOS set-up. Based on these future developements and upgrades are discussed.  
slides icon Slides MOBL3 [3.578 MB]  
 
MOPC38 Overview on Electron Bunch and Photon Beam Diagnostic Techniques for CW Linear Accelerators Using the Example of ELBE 158
 
  • R. Schurig, S. Findeisen, M. Gensch, B.W. Green, J. Hauser, S. Kovalev, M. Kuntzsch, U. Lehnert, F. Röser, Ch. Schneider
    HZDR, Dresden, Germany
  • A. Al-Shemmary, M. Bousonville, M.K. Czwalinna, T. Golz, H. Schlarb, B. Schmidt, S. Schulz, N. Stojanovic, S. Vilcins
    DESY, Hamburg, Germany
  • E. Hass
    Uni HH, Hamburg, Germany
 
  For future light sources a continuous wave mode of operation enables perspectives for high precision time-resolved experiments. In order to ensure steady experimental conditions, various elements for electron bunch and photon beam diagnostics are used. Bunch Arrival Time Monitors (BAM), Bunch Compression Monitors (BCM), Electro-optical Sampling (EOS) and new types of THz-diagnostic are essential for the understanding of the machine’s behavior to generate stable secondary radiation. The detector readout benefits from the high repetition rate and allows data acquisition in frequency domain with enhanced sensitivity. The contribution will give an overview on CW Diagnostic elements at ELBE which are currently in commissioning state and first measurement results which have been carried out.  
 
TUPC29 Grounded Coplanar Waveguide Transmission Lines as Pickups for Beam Position Monitoring in Particle Accelerators 438
 
  • A. Penirschke, A. Angelovski, R. Jakoby
    TU Darmstadt, Darmstadt, Germany
  • C. Gerth, U. Mavrič, D. Nölle, C. Sydlo, S. Vilcins
    DESY, Hamburg, Germany
 
  Funding: The work was supported by the MSK group at DESY Hamburg. The authors would like to thank the CST AG for providing the CST Software Package.
Energy beam position monitors (EBPM) based on grounded co-planar waveguide (GCPW) transmission lines have been designed for installation in the dispersive sections of the bunch compressor chicanes at the European XFEL. In combination with beam position monitors at the entrance and exit of the bunch compressor chicanes, measurements of the beam energy with single bunch resolution are feasible. The EBPM consists of transversely mounted stripline pickups in a rectangular beam pipe section. The signal detection for the measurement of the phases of the pulses at each end of the pickups is based on the standard down-conversion and phase detection scheme used for the low-level RF-system. A measurement resolution within the lower micrometer range can be achieved for input signal reflections at the pickup of less than -25 dB at 3 GHz. In this paper, simulation results of a novel pickup geometry utilized with GCPW pickup structures and optimized transitions to perpendicular mounted coaxial connectors are presented. The simulation results exhibit small reflection coefficients with reflected signal components having less than 2% of the peak voltage signal.
 
 
FRWMJ5
Production of Cavity BPMs for the European XFEL  
 
  • D. Lipka, D. Nölle, S. Vilcins
    DESY, Hamburg, Germany
 
  The DESY colleagues gave a comprehensive presentation of the large-scale cavity BPM system required for the XFEL (DESY), with most details are self-explaining by the slides. The XFEL cavity BPM pickup is based on a design from T. Shintake (Spring-8), a compact setup of waveguide loaded dipole mode and reference cavities, both utilizing a “magnetic”(loop) waveguide-to-coaxial transition for the signals. Both XFEL cavity BPM variants, for the beamline and the undulator, are made of stainless steel, to ensure a low-Q of ~70 (3.3GHz operating frequency), ensuring single bunch detection (bunch spacing 222ns). Details on the performance and manufacturing of the N-type feedthrough were given, which is based on a design of Shintake. Dirk went through the entire production process of the cavity BPMs, starting from the first prototypes until the full production series, which included some surprises. This contribution was very comprehensive, and most questions were answered by the presentation. On the cross coupling between the planes, Dirk mentioned better than 40dB!  
slides icon Slides FRWMJ5 [1.025 MB]