Author: Rohrer, M.
Paper Title Page
TUPC25 Design of the SwissFEL BPM System 427
 
  • B. Keil, R. Baldinger, R. Ditter, W. Koprek, R. Kramert, F. Marcellini, G. Marinkovic, M. Roggli, M. Rohrer, M. Stadler, D.M. Treyer
    PSI, Villigen PSI, Switzerland
 
  SwissFEL is a Free Electron Laser (FEL) facility being constructed at PSI, based on a 5.8GeV normally conducting main linac. A photocathode gun will generate two bunches with 28ns spacing at 100Hz repetition rate, with a nominal charge range of 10-200pC. A fast beam distribution kicker will allow to distribute one bunch to a soft X-ray undulator line and the other bunch to a 0.1nm hard X-ray undulator line. The SwissFEL electron beam position monitor (BPM) system will employ three different types of dual-resonator cavity BPMs, since the accelerator has three different beam pipe apertures. In the injector and main linac (38mm and 16mm aperture), 3.3GHz cavity BPMs will be used, where a low Q of ~40 was chosen to minimize crosstalk of the two bunches*. In the undulators that just have single bunches and 8mm BPM aperture, a higher Q will be chosen. This paper reports on the development status of the SwissFEL BPM system. Synergies as well as differences to the E-XFEL BPM system** will also be highlighted.
* F. Marcellini et al., "Design of Cavity BPM Pickups For SwissFEL", Proc. IBIC'12, Tsukuba, Japan, 2012.
** B. Keil et al., "The European XFEL BPM System", Proc. IPAC'10, Kyoto, Japan, 2010.
 
poster icon Poster TUPC25 [1.074 MB]  
 
TUPF09 Commissioning Experience and First Results From the New SLS Beam Size Monitor 519
 
  • V. Schlott, M. Rohrer, Á. Saá Hernández, A. Streun
    PSI, Villigen PSI, Switzerland
  • Å. Andersson, J. Breunlin
    MAX-lab, Lund, Sweden
  • N. Milas
    LNLS, Campinas, Brazil
 
  Funding: The presented work has received funding from the European Commission under FP-7-INFRASTRUCTURES-2010-1/INFRA-2010- 2.2.11 project TIARA (CNI-PP). Grant agreement no. 261905.
In the context of the TIARA work package “SLS vertical emittance tuning” (SVET), an extremely small vertical beam size of 3.6 μm, corresponding to a vertical emittance of 0.9 pm, was verified using an optical monitor based on imaging of pi-polarized light. Since the existing beam size monitor reached its limit of resolution, a new monitor beam line was designed and installed at the 08BD bending magnet of the storage ring of the Swiss Light Source SLS. Larger magnification and operation at shorter wavelength provide improved spatial resolution. Reflective optics enables convenient switching between different wavelengths. An optical table is located in a hutch outside the storage ring tunnel to provide access during operation. Movable obstacles in the beam path create interference patterns and thus provide redundancy of model based analysis of the images. In this paper we report on our commissioning experience and provide a comparison of the different measurement methods at different wavelengths.
 
poster icon Poster TUPF09 [0.292 MB]