Author: Hass, E.
Paper Title Page
MOBL3 Electron Bunch Diagnostic at the Upgraded ELBE Accelerator: Status and Challenges 23
 
  • M. Kuntzsch, S. Findeisen, M. Gensch, B.W. Green, J. Hauser, S. Kovalev, U. Lehnert, P. Michel, F. Röser, Ch. Schneider, R. Schurig
    HZDR, Dresden, Germany
  • A. Al-Shemmary, M. Bousonville, M.K. Czwalinna, T. Golz, H. Schlarb, B. Schmidt, S. Schulz, N. Stojanovic, S. Vilcins
    DESY, Hamburg, Germany
  • E. Hass
    Uni HH, Hamburg, Germany
 
  Within the ELBE upgrade towards a Center for High Power Radiation Sources (HSQ), a mono energetic positron, a liquid lead photo neutron source and two new THz sources have been installed at the superconducting electron linac at ELBE. A variety of established as well as newly developed electron beam diagnostics were installed and tested. In this paper we want to present first results achieved with the currently existing prototype beam arrival time and bunch compression monitors (BAM, BCM) as well as one versatile EOS set-up. Based on these future developements and upgrades are discussed.  
slides icon Slides MOBL3 [3.578 MB]  
 
MOPC37 Longitudinal Bunch Profile Reconstruction Using Broadband Coherent Radiation at FLASH 154
 
  • E. Hass
    Uni HH, Hamburg, Germany
  • C. Behrens, C. Gerth, B. Schmidt, M. Yan
    DESY, Hamburg, Germany
  • S. Wesch
    HZB, Berlin, Germany
 
  The required high peak current in free-electron lasers is realized by longitudinal compression of the electron bunches to sub-picosecond length. Measurement of the absolute spectral intensity of coherent radiation emitted by an electron bunch allows monitoring and reconstruction of the longitudinal bunch profile. To measure coherent radiation in the teraherz and infrared range a in-vacuum coherent radiation intensity spectrometer was developed for the free-electron laser in Hamburg(FLASH). The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels: it can be operated either in short (5-44 um) or in long wavelength mode (45-430 um). Fast parallel readout permits the monitoring of coherent radiation from single electron bunches. Large wavelength coverage and superb absolute calibration of the device allows reconstruction of the longitudinal bunch profile using Kramers-Kronig based phase retrieval technique. The device is used as a bunch length monitor and tuning tool during routine operation at FLASH. Comparative measurements with radio-frequency transverse deflecting structure show excellent agreement of both methods.  
 
MOPC38 Overview on Electron Bunch and Photon Beam Diagnostic Techniques for CW Linear Accelerators Using the Example of ELBE 158
 
  • R. Schurig, S. Findeisen, M. Gensch, B.W. Green, J. Hauser, S. Kovalev, M. Kuntzsch, U. Lehnert, F. Röser, Ch. Schneider
    HZDR, Dresden, Germany
  • A. Al-Shemmary, M. Bousonville, M.K. Czwalinna, T. Golz, H. Schlarb, B. Schmidt, S. Schulz, N. Stojanovic, S. Vilcins
    DESY, Hamburg, Germany
  • E. Hass
    Uni HH, Hamburg, Germany
 
  For future light sources a continuous wave mode of operation enables perspectives for high precision time-resolved experiments. In order to ensure steady experimental conditions, various elements for electron bunch and photon beam diagnostics are used. Bunch Arrival Time Monitors (BAM), Bunch Compression Monitors (BCM), Electro-optical Sampling (EOS) and new types of THz-diagnostic are essential for the understanding of the machine’s behavior to generate stable secondary radiation. The detector readout benefits from the high repetition rate and allows data acquisition in frequency domain with enhanced sensitivity. The contribution will give an overview on CW Diagnostic elements at ELBE which are currently in commissioning state and first measurement results which have been carried out.