Author: Di Mitri, S.
Paper Title Page
MOPC04 Electron Beam Collimation for Slice Diagnostics and Generation of Femtosecond Soft X-Ray Pulses from a Free Electron Laser 49
 
  • S. Di Mitri, M. Bossi, D. Castronovo, I. Cudin, M. Ferianis, L. Fröhlich
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  We present the experimental results of femtosecond slicing an ultra-relativistic, high brightness electron beam with a collimator*. We demonstrate that the collimation process preserves the slice beam quality, in agreement with our theoretical expectations, and that the collimation is compatible with the operation of a linear accelerator. Thus, it turns out to be a more compact and cheaper solution for electron slice diagnostics than commonly used radiofrequency deflecting cavities and having minimal impact on the machine design. The collimated beam can also be used for the generation of stable femtosecond soft x-ray pulses of tunable duration from a free electron laser.
* S. Di Mitri et al., Phys. Rev. Special Topics - Accel. Beams 16, 042801 (2013).
 
 
WEPF22 Non Invasive Optical Synchrotron Radiation Monitor Using a Mini-Chicane 860
 
  • R.B. Fiorito, R.A. Kishek, A.G. Shkvarunets
    UMD, College Park, Maryland, USA
  • D. Castronovo, M. Cornacchia, S. Di Mitri, M. Veronese
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • C. Tschalär
    MIT, Middleton, Massachusetts, USA
 
  Funding: Office of Naval Research and DOD Joint Technology Office
We are developing a design for a minimally perturbing mini-chicane which utilizes the optical synchrotron radiation (OSR) generated from magnetic bends to measure the rms emittance and other optical parameters of the beam. The beam is first externally focused at the first bend and the OSR generated there is used to image the beam. Subsequently, any pair of bends produces interferences (OSRI) whose visibility can used to determine the beam divergence. The properties of different configuration of bends in the chicane have been analyzed to provide an optimum diagnostic design for a given set of beam parameters which: 1) provides a sufficient number of OSRI fringes to allow a measurement of the beam divergence; 2) minimizes the competing effect of energy spread on the fringe visibility; 3) minimizes the effect of coherent synchrotron radiation and space charge on the beam emittance; and 4) minimizes the effect of compression on the bunch length, as the beam passes through the chicane. Diagnostic designs have been produced for 100-300 MeV beams with a normalized rms emittance of about 1 micron for application to Fermi@Elettra and similar high brightness free electron lasers.
 
poster icon Poster WEPF22 [0.642 MB]