Author: Devlin, L.J.
Paper Title Page
WEPC43 Update on Beam Loss Monitoring at CTF3 for CLIC 787
  • L.J. Devlin, S. Mallows, C.P. Welsch, E.N. del Busto
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • E. Branger
    Linköping University, Linköping, Sweden
  • L.J. Devlin, S. Mallows, C.P. Welsch, E.N. del Busto
    The University of Liverpool, Liverpool, United Kingdom
  • E. Effinger, E.B. Holzer, S. Mallows, E.N. del Busto
    CERN, Geneva, Switzerland
  Funding: Work supported by STFC Cockcroft Institute Core Grant No. ST/G008248/1
The primary role of the beam loss monitoring (BLM) system for the compact linear collider (CLIC) study is to work within the machine protection system. Due to the size of the CLIC facility, a BLM that covers large distances along the beamline is highly desirable, in particular for the CLIC drive beam decelerators, which would alternatively require some ~40,000 localised monitors. Therefore, an optical fiber BLM system is currently under investigation which can cover large sections of beamline at a time. A multimode fiber has been installed along the Test Beam Line at the CLIC test facility (CTF3) where the detection principle is based on the production of Cherenkov photons within the fiber resulting from beam loss and their subsequent transport along the fiber where they are then detected at the fiber ends using silicon photomultipliers. Several additional monitors including ACEMs, PEP-II and diamond detectors have also been installed. In this contribution the first results from the BLMs are presented, comparisons of the signals from each BLM are made and the possible achievable longitudinal resolution from the fiber BLM signal considering various loss patterns is discussed.