

Operation of a Single Pass, Bunch-by-bunch x-ray Beam Size Monitor for the CESR Test Accelerator Research Program

October 3, 2012

Goals For This Presentation:

- 1. Provide an overview of the efforts required to design, commission and operate an x-ray beam size monitor in support of a scientific program
- 2. Highlight the instrument capabilities, limitations and characteristics
- 3. Provide examples of present and future measurements

CESR & CHESS

- Cornell Electron Storage Ring (CESR)
- Dual beam (positron/electron) storage ring with a 768 m circumference
- Configurable beam energies from 1.8 GeV to 6 GeV
- Beam currents up to 400 mA for counter-rotating beams
- Bunch spacings down to 4 nS in increments of 2 nS
- Cornell High Energy Synchrotron Source (CHESS):
- High intensity x-ray source
- 7 instrumented x-ray beam lines with 11 user experimental stations
- The positron instrument is installed in D-Line and the electron instrument is installed in C-Line

The basic setup consists of the following:

- X-ray source dipole magnet which is part of CESR
- Continuous vacuum vessel which extends from the source to the detector
- Optics box contains moveable stages with several optics elements which can be inserted into the x-ray beam
- Detector box contains movable stages which hold filters and the beam size detector and associated amplifiers
- Control and analysis software running remotely

Vacuum Overview

- Continuous vacuum vessel from x-ray source to detector
- Multi stage differential pumping with gate valve protection controlled via programmable logic controllers
- Allows for non UHV compatible electronics to be installed in the detector box WITHOUT contaminating the storage ring vacuum
- Provides a "windowless" x-ray transmission path from source to detector

Vacuum Pressures Along Beam Line

48 Hour Pump Down Curve

Vacuum Pressure Along Beam Line

Installed Detector

Detector Diode Segments

Mounted Detector

- The standard detector is a vertical array of 32 InGaAs diodes with a 50µm pitch and horizontal width of 400µm.
- The diode array is mounted to a printed circuit board and the diode connections made with wire bonds
- The InGaAs layer is 3.5 μ m thick, which absorbs 73% of photons at 2.5keV; there is a 160nm Si₃N₄ passivation layer.
- The time response of the detector is sub-nanosecond
- The detector is mounted on a rotatable stage, studies thus far have focused on vertical beam size measurements in the vertical orientation

Optics Stages

- For all beam energies an adjustable vertically limiting slit (pinhole) is available (typ height = 45 μm)
- For less than 2.5 GeV, a low energy Fresnel zone plate and a coded aperture are available
- At or above 4 GeV a high power coded aperture is available on a high energy chip
- These elements reside in the storage ring vacuum and can be selected and aligned remotely to meet the requirements of various measurements

• There are three features, a box, a coded aperture and a Fresnel zone plate

Low Energy Optics Chip Layout

Fresnel Zone Plate

- - Creates a diffraction pattern at the detector 2.5 µm Si substrate with a 0.7 µm thick layer of electroplated gold
 - 310µm x 1200µm, 8 transmitting elements (10µm to 40 µm)
 - Usable with non-monochromatic x-ray beams and small beam sizes
 - Useful for low photon count, low energy measurements
 - High power device features are half the scale ٠
 - 625 µm substrate with a 10 µm thick layer of electroplated gold

- True focusing device
- The Fresnel zone plate has been problematic due to low photon counts when using the required monochromator
- The Fresnel zone plate pattern has 120 transmitting rings in a diameter of 1200µm.

Filters/Slits

Filter/Slit Stage

- Stage with multiple elements which can be inserted into the x-ray beam between the optical elements and the detector
- Horizontally limiting tungsten slits (35 μ m 171 μ m) used for high energy and or high current operation
- Filters used to change the spectral content of the x-ray beam and thus control the detector response
 - 4 µm diamond filter
 - 2 µm molybdenum filter
 - 6 µm aluminum filter (soon)
- Used to derive the x-ray spectrum used in analysis

- The xbsm data acquisition system is capable of collecting beam size measurements on a single pass, bunch by bunch, turn by turn basis
- There is an independent data acquisition channel for each of the 32 detector diodes

Local Timing Circuitry:

- Receives 24 MHz instrumentation clock
 - Embedded turn marker
 - Hardware triggers for instrument synchronization (xBSM, BPM)
- Generates 32 programmable sampling clocks
 - 250 MHz, 125 MHz, etc (based on bunch spacing)
 - Configurable clock delay for alignment and sampling
- Adjustable turn marker for synchronization

- We use the timing controls and bunch pattern gating to align the sampling points with the beam
- This alignment allows for bunch by bunch sampling of the amplitude peak of the diode response signal
- All 32 channels are aligned and sampled synchronously resulting in the capture of a detector image

NOTE: This image is a composite made by shifting the sample point in 10 pS increments with some tolerance

A set of the set of

xBSM Root Fitter Single Bunch Size Summary

Matlab Control GUI

Data acquisition and instrument control software written in Matlab

- Graphical user interface panels for timing, acquisition and instrument motor control
- Provides basic analysis and display of a sample of the turn by turn measurements
- Allows for the possibility of real time particle beam tuning
- Analysis of large data sets is slow

Offline analysis is done via locally developed XbsmRootFitter

- C++ based, utilizing the CERN ROOT package to book, store, fit and display histograms
 - ROOT uses MINUIT for fitting and FFTW frequency analysis
- · Very flexible package which allows for a variety of plots
- Routines for systematic compensations
 - Pedestal subtraction, channel calibrations, gain-range scaling, bunch to bunch crosstalk compensation

Software

Pinhole Analysis

- The pinhole is a simple optical element with a single slit and an opaque masking material which produces a diffraction pattern at the detector
- In order to generate a model for the image, we apply the derived x-ray spectrum to a numerical calculation of Fraunhofer diffraction
- The outer diffraction features are smeared due to the energy spread.
- This allows us to approximate the pinhole image as a sum of two gaussians (broad and narrow) plus a background
- The resulting fitting function is used to fit the detector image data and calculate a beam size and image offset

Bunch: 1 Turn: 1, Mean: 17.9338, Sigma: 0.57511, File: RD_004029.dat

15

Detector Diode Current (Pixel)

9 µm beam size

20

10

Coded Aperture Analysis

- The coded aperture is a multiple slit optical device which generates a diffraction pattern at the detector
- The diffraction pattern is calculable using the derived x-ray spectrum and the detailed geometry and materials of the coded aperture
- This pattern can be calculated for a range of beam profiles and positions and used to generate a searchable matrix of templates (see J Flanagan, proc. DIPAC11)
- Alternatively, we have parameterized the diffraction pattern as a sum of 12 gaussians with no un-modeled background
- This is convenient for analytical chi squared fitting
- The resulting fitting function is used to fit the detector image data and calculate a beam size and image offset

fitted curve

350

300

250

200

150

Detector Data With Fitting Function

15

20

25

10

200

180

160

140 120

100

80

Nate Rider, CLASSE

Detector Diode Current (Pixel)

21 µm beam size

Bunch: 1 Turn: 1, Mean: 16.1461, Sigma: 1.1382, File: RD 021439.dat

fitted curve

35

30

- The pinhole image is sensitive to average x-ray energy and the height of the opening
- Modeled image response to variations in pinhole height

Image Size Vs Pinhole Height Scan

PH and CA Comparison

Controlled Beam Size Scan

Coded Aperture Size Vs PH Size

- Cross check pinhole results versus coded aperture results for identical conditions
- Artificially increase and decrease the beam size by introducing a closed dispersion bump in a wiggler
- Plot coded aperture results versus pinhole results
 - Points represent turn averaged data
 - Brackets represent the RMS spread of the single bunch single turn measurements
- We also used a specially tuned beam to capture two very small beam size measurements and added them to the plot to extend the range of comparison

Beam Position At Detector

dline pinhole (4B) and coded aperture (4F)

- Intra Beam Scattering is a phenomenon of current dependent beam size seen in very small beams
- A typical experiment consists of filling the storage ring with single bunch charged to 10¹¹ particles and allowing the bunch to decay down to 10⁹ particles while recording the turn by turn change in vertical beam size
- The xBSM is used to collect beam size versus current of individual bunches over many turns
- Turn by turn measurements allow for frequency analysis of beam dynamics

Disclaimer: The physics phenomena which are evident on this slide are outside the scope of this presentation

- This program studies electron cloud induced multi-bunch phenomenon
- A typical experiment involves loading the storage ring with a multi bunch train (20, 30 or 45 bunches) with a spacing of 4 nS to 28 nS (4 nS increments) between bunches and bunch currents of approximately 1 mA
- The beam size for each bunch is measured on a turn by turn basis for up to 4096 turns

Positron Bunch Size (Pinhole Optic) Along 30 Bunch Train

Disclaimer: The physics phenomena which are evident on this slide are outside the scope of this presentation

Multiple Longitudinal Slices Per Turn

1x12 Telecom Diode Array

Bunch Slicing:

- Acquire a size profile for a single bunch on a single turn
- A measurement requires multiple longitudinal slices of a single bunch
- Testing high speed diodes (tr/tf ~35 pS) with parallel sampling

Summary:

- The xbsm is routinely used in the CESRTA program for precision measurement of beams with a vertical size as small as 9 μm
- There is an ongoing effort to understand systematic effects and to optimize the analysis of images
- Now that we have achieved basic functionality of the instrument, we need to undertake a more detailed characterization of the operational characteristics (resolution, accuracy, repeatability, etc)
- The device has proven to be essential to the CESRTA low emittance tuning program and to understand intrabeam scattering and the emittance dilution effect of the electron cloud

Name	Organization	Responsibility
Mike Billing	LEPP	Experimenter
Chris Conolly	CHESS	Operations
Eric Edwards	CHESS	Vacuum Controls
Michael Ehrlichman	LEPP	Experimenter
John Flanagan	KEK	Analysis
Brian Heltsley	LEPP	Analysis
Aaron Lyndaker	CHESS	Hardware
Mark Palmer	LEPP/FNAL	Project Manager
Dan Peterson	LEPP	Analysis
Nate Rider	LEPP	Project Coordinator
Dave Rubin	LEPP	Principal Investigator
Robert Seeley	CHESS	Vacuum
James Shanks	LEPP	Experimenter
Kiran Sonnad	LEPP	Experimenter
Chris Whiting	CHESS	Vacuum

Primary Team Members

LEPP = Laboratory For Elementary Particle Physics CHESS = Cornell High Energy Synchrotron Source KEK = High Energy Accelerator Research Organization

Thank You

Additional Slides

Abstract:

The CESR Test Accelerator (CesrTA) program targets the study of beam physics issues relevant to linear collider damping rings and other low emittance storage rings. This endeavor requires new instrumentation to study the beam dynamics along trains of ultra low emittance bunches. A key element of the program has been the design, commissioning and operation of an x-ray beam size monitor capable, on a turn by turn basis, of collecting single pass measurements of each individual bunch in a train over many thousands of turns. This new instrument utilizes custom, high bandwidth amplifiers and digitization hardware and firmware to collect signals from a linear InGaAs diode array. The instrument has been optimized to allow measurements with $3x10^9$ to $1x10^{11}$ particles per bunch. This paper reports on the operational capabilities of this instrument, improvements for its performance, and the methods utilized in data analysis. Examples of key measurements which illustrate the instrument's performance are presented. This device demonstrates measurement capabilities applicable to future high energy physics accelerators and light sources.

The calculation of the diffraction results in the blue points. (Calculated values have been smoothed with an RMS of 17.68 microns at the image or 7.0 microns at the source.) The calculated image is fit to the sum of 12 Gaussians, shown in various colors in the figure. The resulting sum of Gaussians (also smoothed) shown in the red curve closely matches the calculated diffraction pattern.

Coded Aperture Analysis

The model provides a function describing the image for zero beam size, shown superimposed on an image. To fit the image, this function is convoluted with a single Gaussian representing the beam size, magnified on the detector.

Examples are shown for beam sizes of 9.85 and 13.77 microns.

Derived x-ray spectrum

We find we can fit this data, reasonably well for the conditions we have examined, with the Jackson formula modulated by an empirical description of the unknown other filters and detector response. We will collect more complete data in the future (missing points, aluminum filter).

Data Acquisition

PDLY = Programmable Delay

Local Timing Circuitry