

IFMIF-LIPAc diagnostics and its challenges

IBIC 2012 – Tsukuba October 3rd, 2012

CEA Saclay: P. Abbon, J. Egberts, J.F. Denis, J.F. Gournay, F. Jeanneau, A. Marchix, *J. Marroncle*, J.P. Mols, T. Papaevangelou, M. Pomorski.

CIEMAT Madrid: J. Calvo, **J.M. Carmona**, P. Fernandez, A. Guirao, D. Iglesias, C. Oliver, I. Podadera, A. Soleto

INFN Legnaro: M. Poggi

IFMIF, LIPAc: a brief introduction

Injector overview

• Allison scanner for emittance

Diagnostics at "high" energy (downstream RFQ)

- Radiation background
- Profilers: IPM & FPM
- Losses: BLoM & µLoM
- BPMs
- Slits

Summary

IFMIF

(International Fusion Materials Irradiation Facility)

International agreement of the **BA** (JAEA+F4E in Feb. 2007) = **IFMIF** + IFERC + JT60-SA

IFMIF^{*} : to test materials submitted to very high neutron fluxes for future **Fusion** Reactors.

2 cw accelerators, 2 x 125 mA, 2 x 5MW H M L Beam profile 200 x 50 mm² Flux ~ 10¹⁷ neutrons/s Typical reactions ⁷Li(d,2n)⁷Be ⁶Li(d,n)⁷Be ⁶Li(d,n)⁷Be ⁶Li(d,n)⁷Be

LIPAc

(Linear IFMIF Prototype Accelerator)

LEBT / MEBT / HEBT = Low / Medium / High Energy Beam Transport RFQ = Radio Frequency Quadruple

1.125 MW = ability for the Beam Dump to evacuate the whole energy of the LHC beams every 11 minutes!

Challenges

highest intensity (125 mA cw) highest beam power highest space charge \uparrow RFQ length to \downarrow SC for beam injection in the SRF Linac longest RFQ (0.1 to 5 MeV) ~ 10 m Validation Phase: LIPAc

Injector

Injector challenges (0 to 100 keV)

E_{max} = 100 keV & I ~ 150 mA

High Space Charge: shorten the LEBT* length for minimizing emittance growth ⇒ lack of space

- → Limited number of diagnostics: only 1 diagnostic box shared with pumping...
- → not enough room for DCCT: no RFQ transmission measured in cw mode.

Low energy (100 keV):

Cons:

- High space charge to be overcome with Kr injection (few 10⁻⁵ Torr)
 - \rightarrow enlarge the beam diameter (few cm)
- Numerous secondary electrons → non uniformity of charge compensation

Pro:

• High interaction with residual gas → intensely emitted light (but important reflection on the walls)

High intensity (150 mA):

ightarrow 15 kW continuous beam ightarrow important water cooling

*LEBT: Low Energy Beam Transport

LEBT diagnostics

- Particle loss: thermocouples on electrodes
- Space charge analysis: 1 FGA (4 Grid Analyzer)
- Beam current:
 - 1 ACCT (at RFQ entrance -> transmission)
 - 1 "Faraday Cup", Beam Stopper
 - → Calorimetric measurements (FC, BS and Cone)

- Emittance (Allison): 4 positions for 1 Emittancemeter EMU
- Transverse beam profiles (fluorescence): 6 CID cameras
- Beam purity species: 1 deported spectrometer with optic fiber

Note: a beam chopper will be installed between the 2 solenoids \rightarrow adding a new apparatus!

Emittance: Allison scanner

cw mode \rightarrow 15 kW (Max)

Emittance measurement made on LIPAc injector (CEA Saclay, 08/2012)

- with a proton beam to avoid injector activation
- $E_p = 50 \text{ keV}$ and $I_B/2$ (to keep SC constant)
- $\Rightarrow \varepsilon_x = 0.29 \,\pi.\text{mm.mrad}$

RFQ acceptance $\varepsilon_{x,y} = 0.30 \pi$.mm.mrad (0.25 specification)

- Thermal simulation (COMSOL)
- Critical case: T_{max}=1191 °C on W surface

- Cu block covered by W tiles
- Internal water cooling system
- Brazing technique for Cu/W assembly

IFMIF - LIPAc diagnostics & challenges – IBIC 2012

Diagnostics downstream the RFQ 5 to 9 MeV

Challenges at 5 to 9 MeV energy

High Space Charge \Rightarrow compact design

 \rightarrow reduce available space for diagnostics (i.e. no DCCT in the MEBT)

Low energy:

Cons:

- Low β effect (β <0.1)
 - → bunch overlapping ("de-bunching") effect
 - → challenging for BPMs, FCT...
- superficial deposition (short penetration and small beam size)
 - → slits, SEM grid, Faraday cup...
 - \rightarrow fast chopper for interceptive needed
- beam particle stopped in beam pipe (D {9MeV} \Rightarrow 140 μm Fe)
 - \rightarrow only neutral secondaries (γ , n) \rightarrow beam losses

Pro:

- "high" ionization & fluorescence processes
 - \rightarrow good for profilers based on beam residual gas interaction

High intensity (125 mA cw):

- high power deposition (interceptive diagnostics very challenging)
- beam losses for MPS are crucial (10 $\mu s)$
- huge space charge effects \rightarrow IPM
- huge amount of radiation background (~ 7 kSv/h on IPM close to the BD)

but, good S/N ratio for BPMs

MEBT/HEBT: Medium/High Energy Beam Transport

Radiation background

Shielding (polyethylene disks, plates...)

→ neutrons
Fluence, calculated over **1 month cw**

Point #	5	15	25	145	115	85
n/cm²/s	7 10 ⁸	6 10 ⁸	5 10 ⁸	4 10 ⁷	6 10 ⁶	4 10 ⁶
Fluence n/cm ²	2 10 ¹⁵	2 10 ¹⁵	1 10 ¹⁵	1 10 ¹⁴	2 10 ¹³	1 10 ¹³

Electronic radiation hardness

− high energy neutrons (~ MeV) \Rightarrow electronic trouble for Fluence > 10^{11} n/cm²

IPM: Ionization Profile Monitor

Jan Egberts's thesis, defended on September 25th, 2012

Design & manufacturing of an IPM prototype

- 6 x 6 cm² aperture
- electric field homogeneity (Lorenz) \rightarrow degraders
- HV ~ 5 kV (E=833 V/cm)

and tested at GSI Darmstadt

- linearity (step motor): 100µm well resolved
 - \rightarrow very good field homogeneity
- Position resolution of beam center vs data acquisition time
 - $\rightarrow \sigma$ <100 µm after Δ t~0.2 ms
- Profile comparison IPM / FPM
- extrapolation to LIPAc beam conditions \rightarrow Ok

IFMIF - LIPAc diagnostics & challenges – IBIC 2012

IPM Resolution

- 23.3

1 23.2 July 23.1

23

22.8

IPM (Space Charge)

Design & manufacturing the HEBT IPM

- 15 x 15 cm² aperture
- HV ~ 10 kV (E=667 V/cm)

Particle tracking within a 125 mA beam

- no SC \rightarrow transverse displacement < 300µm
- SC applied \rightarrow transverse displacement > 5 mm

How to overcome

Silhi proton source

• E_n = 95 keV

• I_{max}=6 mA cw

(CEA Saclay)

- magnetic field for guidance, but no room...
- apply correction algorithm
 - hypothesis:

generalized Gaussian beam distribution round beam shape

- distribution iteration until self consistent solution is found

SC on

FPM: Fluorescence Profile Monitor

Design & manufacture at CIEMAT Madrid

IFMIF

2 FPM prototypes: Image Intensifier CID camera & Multichannel PMT

Tests done at CNA Sevilla: 9 MeV deuteron beam (up to 40 μ A)

- \rightarrow linearity with I_{beam} and with pressure: Ok
- \rightarrow extrapolation to LIPAc beam conditions: Ok
- \rightarrow good agreement FPMs / wire scanner for various gas (N₂, Xe, Ar, Ne)
- \rightarrow beam shape evolution with time: Ok
- \rightarrow beam tracking capabilities for steered beams : Ok
- \rightarrow Position resolution of 50 μm achieved

due to high radiation background \rightarrow PMT

IFMIF - LIPAc diagnostics & challenges - IBIC 2012

16

BLoM: Beam Loss Monitors

0 deg

Markus Sapinski

et.

pion pion

mut

mu

LHC. Feb 2040

LIPAc range

Objectives

- Machine Safety \rightarrow provide an interlock signal to MPS in less than 10 µs
- Monitoring the beam losses

Monitors: LHC Ion Chambers (~40 ICs)

Low energy

- only neutrons and γ 's exit the beam pipe (secondary)
 - \rightarrow low IC response!

High beam intensity

huge background

Feasibility study

- simulation \rightarrow I_{IC}~2 pA for 1W/m losses in worst case
- experimental test in neutron and $y \rightarrow$ LHC calibration: OK
- MPS \rightarrow threshold 1 to 10 nA: 30 µs to stop LIPAc, not harmful

Electronics

- Fast → MPS
- Integrators → monitoring

neutron calibration (3 MeV)

µLoM: micro-Loss Monitors

Motivation: due to high beam power, beam dynamics group chooses an innovative strategy for

beam tuning.

- \rightarrow instead of minimizing the beam core, they will tune the beam to optimize the halo contribution.
- ightarrow very good sensitivity for beam losses are required

Ideal monitor:

- \rightarrow sensitive to neutrons, less to X-rays and γ produced by sc cavities
- \rightarrow reasonable counting rates in ~minutes
- \rightarrow ability to work at 4.5K
- \rightarrow very good reliability (no possibility of dismounting) and radiation hardness
- → compromise: single crystalline CVD diamond (Chemical Vapor Deposit)

Objective: 3 diamonds/ensemble (8×cavity+solenoid+BPM)

- \rightarrow improve reliability
- ightarrow better transverse localization

Feasibility study:

ightarrow simulation for 1W/m losses

— CVD Diamond

Counting rates & radiation background

Rate versus the electronic threshold (keV) for neutron & γ (1W/m)

(Background is low wrt 1W/m)

Threshold (keV)	γ+n (kHz)		
100	4.3		
200	2.7		
300	2.1		

Neutron tests made with a Van de Graaff (CEA Bruyères-le-Châtel):

 $E_n = 0.2, 0.6, 0.75, 1.2, 2.1, 3.65, 6, 16 MeV$ Goal: diamond response (energy deposit...) Room temperature

neutron/ γ discrimination \rightarrow time of flight

Conclusion

Threshold is \approx 100 keV, but short cable

Simulation fits quite well data

 \Rightarrow more confidence in previous counting rates.

BPM: Beam Position Monitor

Several types of BPMs have to be designed

MEBT (4 striplines): inserted inside the quads due to lack of space SRF Linac cryostat: 8 BPMs (button-type) in cryogenic environment DPlate (3 striplines): beam energy measurement using ToF technique HEBT (2+3): steering of the beam to the Beam Dump. Debunching and big chamber issue

Test

A wire bench test has been constructed and commissioned in CIEMAT for characterization of all LIPAC BPM's

Electronics

based on IQ demodulation of the 1st or 2nd harmonic automatic calibration to minimize phase and amplitude errors in the cables (~70 m)

cryogenic BPM (SRF Linac)

stripline for E measurement

signal (CST PS) for the last BPM (upstream the BD)

IFMIF - LIPAc diagnostics & challenges – IBIC 2012

Slits (Emittance & Energy spread)

Emittance

2 slits in DP (vertical & horizontal) + SEM grid (1)

Energy spread (using the dipole)

1 slit in DP (vertical) + 1 slit (dipole) + SEM grid (2)

Thermal study done at CIEMAT Madrid

hypothesis:

- $\Delta t = 100 \ \mu s / 1 \ s (10^{-4} \ duty \ cycle)$ Carbon forbidden (superconductive cavities) surface power density: 1.5 GeV/m²
- → Plates of high fusion temperature: W, TZM (molybdenum alloy)
- ightarrow radiator with water cooling system

Outcomes from thermo-mechanical analysis:

graphite plates (removable) for commissioning at 5 MeV (no sc Linac) TZM plates (15°) for commissioning at 9 MeV Copper body for cooling channeling

Prototype manufactured at CIEMAT Madrid

slit prototype based on LINAC4 design

IFMIF - LIPAc diagnostics & challenges – IBIC 2012

Summary

LIPAc: very challenging facility

- highest beam power (1.125 MW cw deuteron beam)
- strongest space charge
- longest RFQ
- very high radiation background

Few challenging diagnostics

- Allison scanner \rightarrow high beam power (15 kW to allow cw beam)
- IPM \rightarrow strong space effects (profile distortion / algorithm)
- FPM \rightarrow radiation hardness
- BLoM & μ LoM \rightarrow low beam energy (neutral detection = medium sensitivity)
- BPM \rightarrow cryogenic temperature, mechanical insertion in quad, debunching
- Slits \rightarrow huge surface power density

Future

- switch on electronics, daq & control system
- RFQ commissioning (summer 2015)
- SRF Linac + HEBT + BD (summer 2016)

Centro de Investigaciones Energéticas, Medioambientale v Teoralócicas

Thank you for your attention

Thanks to

GSI diagnostics group and UNILAC GSI people

SILHI – IPHI group at CEA Saclay

CoCase group at Saclay (⁶⁰Co irradiator)

CNA Sevilla accelerator group

B. Dehning for IC lend and advises

Organizing committee to give us the word

and of course, many thanks to

CEA Saclay: P. Abbon, J. Egberts, J.F. Denis, J.F. Gournay, F. Jeanneau, A. Marchix, *J. Marroncle*, J.P. Mols, T. Papaevangelou, M. Pomorski.

CIEMAT Madrid: J. Calvo, **J.M. Carmona**, P. Fernandez, A. Guirao, D. Iglesias, C. Oliver, I. Podadera, A. Soleto

INFN Legnaro: M. Poggi

Backups

Bunch Length Monitor

RGBLM (Residual Gas Bunch Length Monitor)

non interceptive residual gas ionization electron extraction (homogeneous Electric field) through a hole electric static analyser: to sort specific electron energy MCP: electron detection and ToF measurement wrt RF

Prototype design, manufacture and tests at INFN Legnaro

Test on ¹³⁶Xe²⁸⁺ beam at 546 MeV $\rightarrow \Delta t = 300$ ps (FWHM)

10×10 cm² aperture

IFMIF - LIPAc diagnostics & challenges – IBIC 2012

Beam Loss Monitor

LIPAc Commissioning

(N. Chauvin, June 26th 2012)

- Stage 0: Source + LEBT + LPBD in Saclay (full intensity, CW)
- Stage 1: Source + LEBT + LPBD in Rokkasho (full intensity, CW)
- Stage 2: RFQ + MEBT + D-Plate + LPBD (full intensity, pulsed mode)
- Stage 3: SRF linac + HEBT + Beam Dump (full intensity, pulsed mode)
- Stage 4: Ramp up to full power of the whole accelerator.

Pulsed mode (max duty cycle = 10^{-3}): $\Delta t < 1 \text{ ms} (1 \text{ Hz})$.

SC Algorithm

1- Idea

- calculate the Space Charge force
- determine ion displacement at each position
- correct the profile
- 2- Hypothesis
 - D+
 - round beam
 - profiles have a generalized Gaussian shape
 - I_{beam}
- 3- Approach
 - apply statistics

$$\rightarrow g(x') = \Sigma p_{x'}(x,y) \cdot (x,y)$$

where $p_{x'}(x,y)$ is given by beam distribution

Generalized Gaussian distribution

- μ : profile center
- Two degrees of freedom σ: 2nd moment

 β : kurtosis, 4th moment

SC Algorithm (2)

- 4- First parameter to initiate iteration process
 - fit of the experimental profile using a generalized Gaussian to extract

$$\rightarrow \sigma_0 = \sigma_{ex}$$

→ Is₀ = Is_{exp}
 beam intensity given by CT

