Measurement of Nanometer Electron Beam Sizes with Laser Interference using IPBSM

IBIC2012 International Beam Instrumentation Conference

2012 Oct 1 – 4, 2012 Tsukuba International Congress Center, Tsukuba, Japan

Jacqueline Yan, M.Oroku, Y. Yamaguchi, S. Komamiya (The University of Tokyo, Graduate School of Science) T. Yamanaka, Y. Kamiya, T. Suehara, (The University of Tokyo, ICEPP) T. Okugi, T. Terunuma, T. Tauchi, S. Araki, J. Urakawa (KEK)

IBIC2012, J.Yan

Role of IPBSM (Shintake Monitor) at ATF2

ATF2: Linear Collider FFS test facility@KEK

For high luminosity must focus vertical beam size at IP !! flat beam : $\sigma y \ll \sigma x$

FFS
FFS
IPBSM
IPBSM is crucial for achieving ATF2 's Goal 1 !!
IPBSM is crucial for achieving ATF2 's Goal 1 !!
IPBSM is crucial for achieving ATF2 's Goal 1 !!
IPBSM is crucial for achieving ATF2 's Goal 1 !!

OUTLINE measurement scheme, performance, beam tuning roles Beam Time results 2011~2012 upgrades BIC2012, JYan 2

Measurement Scheme

use **laser interference fringes** as target for e- beam Only device able to measure $\sigma_v < 100 \text{ nm}$!!

- •Crucial for beam tuning
- ightarrow realization of future linear colliders

Detector measures measurable range signal Modulation Depth "M" determined by fringe pitch $\mathbf{M} = \frac{N_{+} - N_{-}}{N_{+} + N} = \left| \cos(\boldsymbol{\theta}) \exp\left(-2(\boldsymbol{k}_{y}\boldsymbol{\sigma}_{y})^{2}\right) \right|$ $d = \frac{\pi}{k_v} = \frac{\lambda}{2\sin(\theta/2)}$ \odot_z $\Rightarrow \sigma_y = \frac{d}{2\pi} \sqrt{2 \ln \left(\frac{|\cos(\theta)|}{M}\right)}$ depend on crossing angle $\boldsymbol{\Theta}$ (and λ) Signal Focused Beam : large M Laser Interfere Fringe N + Scattered Photon Electron Beam **N** -[rad] Phase Scan Fringe Phase N: no. of Compton photons Signal Convolution between e- beam profile and fringe intensity Dilluted Beam : small M Fringe Phase [rad] IBIC2012, J.Yan

Crossing angle θ	174°	30°	8°	2°
Fringe pitch $d = \frac{\pi}{k_y} = \frac{\lambda}{2\sin(\theta/2)}$	266 nm	1.03 μm	3.81 μm	15.2 μm
Lower limit	20 nm	80 nm	350 nm	1.2 μm
Upper limit	110 nm	400 nm	1.4 μm	6 μm

 σy^* and M for each θ mode

Expected Performance

 37 ± 2 (stat.) $^{-0}_{+4}$ (syst.) nm

Measures σy* = 20 nm ~few μm with < 10% resolution

$$\sigma_{y} = \frac{d}{2\pi} \sqrt{2 \ln \left(\frac{|\cos(\theta)|}{M}\right)}$$

must select appropriate mode according to beam focusing

Resolution for each θ mode

Role of IPBSM in Beam Tuning

Path construction: access to IP, confirm precision with "eyes & hands" switch e- beam ON → remote control

2 - 8 ° mode

Measured larger σy (~few 100 nm) with clear contrast (i.e. high M : 0.8 – 0.9)

- Syst error study \rightarrow
- upper limit on M_meas \checkmark
- consistency of σy meas

Began commissioning of 174 ° mode

hardware check Optimization of scan strategies

Obstacles (2012 Feb) •Beam condition drift (over many hours) •Not very focused σy^* (still at 3 x β_v^* optics)

one more step before full commissioning of 174 ° mode i.e. consistent fringe scans

Systematic Error Study

Interpretation of M under-evaluation / σy* over-evaluation)

2012 summer: major upgrade of laser optics Goal: alignment precision & reproducibility suppress syst. errors **BEAM TIME GOAL:** > effective small **oy*** tuning Full commissioning of 174° mode better conditions to accomplish \rightarrow stably measure $\sigma y^* < 100 \text{ nm}$ goals in autumn beam run focus down to σy* ~ 37 nm details improvements focal point scan for all modes easier alignment match focal point to IP redefine clear reference lines on new base plates Injection position / angle into lens new θ switching method consistency, reproducibility {small linear stage + mirror actuators } esp. before / after independent for each mode mode switching (instead of shared rotating stages) re-commission **PSD system** \rightarrow monitor jitters / drifts profile imbalance focal point difference suppress path length difference in new design between upper/lower paths

Firm lens holders

check positioning of lens, mirror, prism

just after injection onto vertical table

Confirm fine alignment using CW laser and transparent IP target

inside IP chamber →laser waist & crossing point

IBIC2012, J.Yan

Schedule:

assembling of new setup completed

✤ Now (Sep, 2012): Beam off tests prepare for autumn run (10/15~)

Hardware (re)commissioning PSDs, phase monitor, profile monitors, DAQ modules, ect....

SUMMARY

IPBSM ("Shintake Monitor") installed at ATF2 IP

- use laser interference fringes
 - \rightarrow only device capable of measuring $\sigma y^* < 100 \text{ nm}$
- Crucial for beam tuning → realization of future linear colliders
- < Status >
- Stable measurements of σy* ~ 160 nm (30° mode)
- dedicated systematic error study (2 8 °mode)

<upgrades>

- suppress jitters & bias factors
- stabilize laser system
- reliability & reproducibility in laser optics alignment

< Goals for 2012 autumn beam run>

- full commissioning of 174 ° mode
- stable measurement of σy* < 100 nm</p>
 - \rightarrow achieve focusing down to $\sigma y^* \simeq 37$ nm

BACKUP

New 174 mode

Table 3: Upper limits of each M reduction factor predicted for measuring the design $\sigma_y^* = 37$ nm at ATF2. Assumed here are nominal laser and ATF2 beam parameters, as well as implementation of specific correction functions for the sensitive 174 deg mode used in this case[6].

Modulation reduction factor	37 nm at 174 deg
Total power imbalance	> 99.8 %
Relative position jitter	> 98.0 %
Fringe tilt	> 97.2% (tilt < 1 mrad)
Alignment (t, z)	(> 99.6%, > 99.1 %)
Spatial coherence	> 99.9%
Spherical wavefronts	> 99.7%
Beam size growth within fringe	> 99.7%

Table 4: Upper limits of dominant M reduction factors for measuring $\sigma y^* \sim 500$ nm at 4 deg mode, estimated using data from June, 2012

Modulation reduction factor	O(500) nm at 4 deg
Profile imbalance (t, z)	(> 94%, > 89 %)
Relative position jitter	> 95 %
fringe tilt (t, z)	> 95% (tilt < 20 mrad)
Alignment (t, z)	(> 95%, > 99%)
Polarization	> 98%

laser path misalignment

1 . Laser profile imbalance misalignment of final lens focal point divergence angle affected by reducer setup

In past:

replaced damaged optical components

optimized lens / reducer setup, alignment methods

Polarization related errors

→ imbalance in intensity/ profile
 → half mirror R = 50% only for pure S state elliptical components (P contamination)

2. Laser position offset from IP (beam center) → not a concern, mirror actuators finely adjust to 1/10 of olaser long.: Cz- pos > 99.5 % transv: Ct-pos ~ 100%

adjust to S state
by rotating λ /2 wave plate
measured in past :
half mirror properties,
eccentricity Es : Ep = 1: 0.13

→ Cpol = 97.8 ± 12.8 · tanθ ± 0.1% (2-8, 30 deg)

Cpol = $97.2 \pm 1.3 \cdot \tan\theta \pm 0.1\%$ (174 deg)

for now assume Cpol ~ 98 %

Figure 4.7: [Left] The optical delay system for controlling fringe phase. [right] The piezoelectric stage

Very narrow optimum setting

Beam profile of lower path

bom

Current status of laser system

Stat errors

relative timing	Stabilized by timing scans TDC, TD2 modules	Laser timing	1 - 3 %
Intensity • Stability ~ 1% • optics damaged by high intensity laser in 1 • Safe at ~ 40% power f	Stability ~ 1% optics damaged by	Laser intensity	1.5%
	 high intensity laser in March Safe at ~ 40% power for now 	Beam intensity	ICT monitor resolution: 2-5%
Oscillation	currently stable •exchanged flash lamps and seeder • cavity mirror tuning	jitters	(Measured energy is normalized by ICT)
profile Triangular (non-Gaussian) profile at IP dark spots →Improved by rear mirror tuning	Triangular (non-Gaussian) profile at IP dark spots →Improved by	Laser pointing stability	10~15%
	Beam position	unknown	
Major upgrades in laser optics	 Beamlok new laser table box additional mirror for precise injection onto vertical table changed reducer and expander lens (AR coating , magnification) 	jitters	

M²: 0.5 – 3.0

near field to few times of rayleigh length

- •Assume injected size of ω = 4.5 mm,
- fix focal point to 5.6 mm (lens mover position)

beam focusing dependence on M^2

BeamLok Specifications	Standard Pro Series	With BeamLok/D-Lok	
Beam Pointing Stability ¹²	<±50 µrad	<±25 µrad	
Beam Divergence ¹³	<0.5 mrad	<2 x initial level	
Lamp Lifetimes ¹⁴	30 million pulses	40 million pulses	
Linewidth			
Standard	<1.0 cm ⁻¹		
Injection Seeded ¹⁵	<0.003 cm ⁻¹		
Timing Jitter ¹⁶	<0.5 ns		

ATF

Linac: ビームエネルギー1.3 GeV Damping Ring: 鉛直エミッタンス11 pm・rad

規格化鉛直エミッタンス<mark>30 nm・rad</mark> ILCでの規格化エミッタンス35 nm・rad

ATF2

Final Focus:局所色収差補正に基づいた設計

- ・37 nmの鉛直ビームサイズ -
- ・nmレベルのビーム安定化

→ 新竹モニタで測定 100 nm以下のビームサイズ測定に実績

FFTB vs ATF2

Table 2: Typical e- beam and IPBSM parameters: ATF2 vs FFTB[2, 4]

	FFTB	ATF2
Beam energy	46.6 GeV	1.28 GeV
1 photon energy	8.6 GeV	15 MeV
rep. rate	30 Hz	1.56 Hz (3 Hz)
e- / bunch	1 x 10 ¹⁰	1 x 10 ¹⁰
Bunch length	3 ps	16 ps
(σ_x^*, σ_v^*) at IP	(900, 60) nm	(2200, 37) nm
Laser wavelength	1064 nm	532 nm (SHG)
Range for oy*	40-720 nm	20 nm-6µm

