

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

<u>Volker Schlott</u>, Matsamitsu Aiba, Michael Böge, Natalia Milas, Martin Rohrer, Angela Saa-Hernandez, Andreas Streun (PSI) Åke Andersson, Jonas Breulin (MaxLab)

Design and Expected Performance of the New SLS Emittance Monitor

Contents

- **Motivation** EU-Project TIARA WP-6 SVET
- Swiss Light Source 1 pmrad Vertical Emittance
- Measurement Principles π-Polarization Method Interferometric Method
- New Monitor Design New Features & Improvements
- Critical Issues and Components
- Status & Outlook

Test Infrastructure and Accelerator Research Area <u>www.eu-tiara.eu</u> Work Package 6 "SVET"

Partially funded by the European Commission under the FP7-INFRASTRUCTURES-2010-1/ INFRA-2010-2.2.11 project TIARA (CNI-PP). Grant agreement no 261905.

SVET: SLS Vertical Emittance Tuning

- → investigate ultra-low vertical emittance tuning and control in the regime of strong IBS
- → relevance for damping rings of future linear colliders & for next generation light sources
- → upgrade Swiss Light Source to enable R&D on ultra-low emittances

SVET Partners

PSI CERN INFN/LNF Max-IV-Lab

- → SLS coupling suppression and control
- → CLIC damping ring design
- → Super-B factory design
- → MAX-IV emittance measurement and coupling control

SVET Activities

1. <u>verification of low vertical emittance</u>

beam size measurement: σ_y magnet optics control: β_y

emittance
$$\varepsilon_y = \sigma_y^2 / \beta_y$$

design of a high resolution beam size monitor at SLS (PSI and Max-Lab)

2. minimization of vertical emittance

beam-assisted SLS storage ring alignment and optics correction tuning methods and automation

skew quadrupole corrections and orbit settings (PSI and INFN / LNF)

3. intra beam scattering simulations and measurements

emittance and energy spread increase at high currents

low energy (1.6 GeV) operation of SLS (PSI, CERN)

Swiss Light Source – Some Key Parameters

- Beam Energy 2.4 GeV
- Circumference 288 m
- Emittances

horizontal vertical

- 5.5 nm rad 1 ... 7 pm rad
- Coupling
- Energy Spread
- Beam Current
- Life Time
- Stability
- 0.02 % ... 0.13 % 0.09 % 400 mA (top-up operation)
 - ~ 3 10 h
 - < 1 μ m (photon beam at front end)

Volker Schlott, IBIC-2012, Tsukuba, October 2nd, 2012

Pre-Requisites and Tools for SLS Vertical Emittance Tuning

- 1. <u>high beam stability as a pre-requisite</u>
 - top-up operation \rightarrow high thermal (long term) stability
 - precise BPMs: ~ 100 nm rms (< 100 Hz) fast orbit feedback

orbit control & short term stability

2. procedures & equipment for vertical emittance tuning

re-alignment (beam-assisted girder alignment) of storage ring → remote positioning of 48 girders in 5 DoF (eccentric cam shafts drives)

skew quadrupoles for coupling control (36 in case of SLS)

 \rightarrow sextupoles with additional coils

high resolution beam size monitor $\rightarrow \pi$ polarization method

Procedure for SLS Vertical Emittance Tuning

- 1. measurement and correction of BPM roll error
 - → avoid "fake" vertical dispersion readings (from 48 dispersive BPMs with $\eta_{hor} \neq 0$)
- 2. realignment of magnet girder to remove main sources of vertical dispersion
 - $\rightarrow~$ reduction of rms vertical correction kick from ~ 130 μrad to ~ 50 μrad
- 3. measurement & correction of linear optics
 - \rightarrow model-based quadrupole corrections
- 4. measurement & correction of vertical dispersion and betatron coupling
 - → model-based skew quadrupole corrections (12 dispersive and 24 non-dispersive skew quads)
- 5. <u>"random walk" optimization of vertical beam size</u>
 - → skew quadrupole corrections using beam size measurements from profile monitor works in the background (small steps), overcomes measurement limitations and model deficiencies

SLS Vertical Emittance Optimization – Results

Volker Schlott, IBIC-2012, Tsukuba, October 2nd, 2012

SLS Vertical Emittance Optimization Results

- vertical beam size: $3.6 \mu m \pm 0.6 \mu m$
- vertical emittance: 0.9 pm ± 0.4 pm
- error estimate from beam size and β -function at monitor
- dispersion not subtracted

Beam Size Display from SLS π -Polarization Monitor

Figure taken from:

R. Bartolini, Low Emittance Ring Design, ICFA Beam Dynamics Newsletter, No. 57, Chapter 3.1, 2012 - and updated.

Principle of the SLS Beam Size Monitor – The π-Polarization Method

Å. Andersson, et al., Determination of Small Vertical Electron Beam Profile and Emittance at the Swiss Light Source, NIM-A 592 (2008) 437-446

- imaging of vertically polarized SR in the visible / UV
- ${\ensuremath{\cdot}}$ phase shift of π between two radiation lobes
 - \rightarrow destructive interference in the mid plane
 - \rightarrow **I**_{y=0} = 0 in FBSF (filament beam spread function)
- finite vertical beam size \rightarrow **I**_{y=0} > 0 in FBSF
- modeling by SRW* (Synchrotron Radiation Workshop)
- O. Chubar & P. Elleaume, Accurate and Efficient Computation of Synchrotron Radiation in the Near Field Region, EPAC 1998

2-D Electric Field Distribution (in image plane)

$$E_{\pi}(x,y) = E_{\pi 0} \operatorname{sin} c \left(\frac{2\pi x_c}{\lambda p'} x \right)$$
$$\times \int_{0}^{+\infty} \left(1 + \zeta^2 \right)^{1/2} \zeta K_{1/3} \left(\frac{1}{2} \frac{\lambda_c}{\lambda} (1 + \zeta)^{3/2} \right) \operatorname{sin} \left(\frac{2\pi p}{\lambda \gamma p'} y \zeta \right) d\zeta$$

2-D Intensity Distribution (in image plane)

$$I_{\pi}(x,y) \sim \sin c^2(x) \times \left| \frac{\cos(\psi) - 1}{\psi} \right|^2 \quad \text{with } \psi = \frac{2\pi \theta y}{\lambda}$$

Comparison of the "Old" and "New" SLS Beam Size Monitor

Comparison of the "Old" and "New" SLS Beam Size Monitor

"New" SLS Beam Size Monitor – 2nd Method: SR Interferometry

T. Mitsuhashi, Spatial Coherency of the SR at the Visible Light Region and its Application for Electron Beam Profile Measurement, Proc. PAC 1997, Vancouver, p. 766

• double slit Michelson interferometer adapted for beam size measurements by T. Mitsuhashi (see WEIC02)

• van Citert-Zernike's theorem relates transverse distribution f(y) via FFT with spatial coherence $\gamma(y)$

Intensity of Interference Pattern
$$I(y_0, D) = (I_1 + I_2) \left[\sin c \left(\frac{\pi a \, \chi(D)}{\lambda R} \, y_0 \right) \right] \cdot \left[1 + |\gamma| \cos \left(\frac{2\pi D}{\lambda} \cdot \left(\frac{y_0}{R} + \psi \right) \right) \right]$$

 \rightarrow spatial coherence $\gamma = \left(\frac{2\sqrt{I_1 \cdot I_2}}{I_1 + I_2} \right) \cdot \left(\frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} \right)$ provides rms beam size $\sigma = \frac{\lambda R}{\pi D} \sqrt{\frac{1}{2} \ln \left(\frac{1}{\Delta P} + \frac{1}{\Delta P} \right)}$

<u>The "New" SLS Beam Size Monitor – Beam Line X08DA</u>

Main Features of the "New" SLS Beam Size Monitor

- X08-DA allows for longer beam line
- higher magnification ratio (M = -1.45)
- toroidal mirror as focusing element
- π -polarization & interferometric method
- alignment & calibration set-up

- \rightarrow optics table fully accessible outside of accelerator bunker
- \rightarrow increase of measurement precision
- \rightarrow free selection of SR wavelength without shift of image plane
- → shorter wavelength increases resolution
- $\rightarrow\,$ matched operating ranges (nominal and high resolution)
- → cross-checking of results
- \rightarrow online inspection of monitor at 266 nm and 532 nm

The "New" SLS Beam Size Monitor – Critical Elements and Issues I

Volker Schlott, IBIC-2012, Tsukuba, October 2nd, 2012

The "New" SLS Beam Size Monitor – Critical Elements and Issues II

Toroidal Mirror – Offsets & Misalignments

Influence of Tilts (T_x, T_y) and Axis Rotation

The "New" SLS Beam Size Monitor – Calibration & Alignment

Imode images from: Meyrath et al., Opt. Express, Vol. 13, Issue 8, pp. 2843-2851 (2005)

- CryLas FQSS 266-Q Laser...: λ_1 = 266 nm, λ_2 = 532 nm, vertically polarized (100:1), TEM₀₀
- pinholes as virtual source...:
- "mode transformation"
 "polarization rotation"...:
- remote controlled mirrors...:

diameters of 100 μm, 50 μm, 25 μm, 15 μm, 10 μm, 5 μm, 1 μm

 $\lambda/2$ waveplates at 0° (upper half) and 90° (lower half)

for beam transfer into π -polarization beam size monitor

<u>The "New" SLS Beam Size Monitor – Expected Performance</u>

<u>The "New" SLS Beam Size Monitor – Expected Performance</u>

<u>Comparison:</u> *π*-Polarization Branch – Interferometer Branch

Summary and Outlook

- methods for emittance tuning established at SLS (within TIARA-SVET collaboration)
 - \rightarrow lowest vertical emittance of 0.9 ± 0.4 pmrad
- <u>design of "new" high resolution beam size monitor at SLS</u>
 - \rightarrow application of π -polarization and interferometeric methods
 - \rightarrow overlapping sensitivity ranges for nominal SLS operation and low emittance studies
 - \rightarrow mirror optics (toroidal focusing mirror) provides free selection of SR wavelength
 - \rightarrow sensitivity study using SRW provides specifications for optical elements
 - \rightarrow calibration and alignment branch allows for online monitor performance check
 - $\rightarrow~$ expected measurements resolution for vertical beam height ~ ~2 μm
- <u>next steps...:</u>
 - \rightarrow installation of "new" monitor in SLS X08DA beam line in January 2013
 - \rightarrow further ϵ_y minimization by mid of 2013 (towards SLS quantum emittance limit of 0.2 pmrad)
 - \rightarrow automated coupling feedback using "new" beam size monitor in 2013

Acknowledgements

many thanks to...:

- → Jakob Ehrat and PSI mechanical engineering for construction & fabrication
- → Albert Kammerer, Markus Baldinger & Rolf Wullschleger for installation
- → Pavel Chevtsov & Colin Higgs for control system interfacing & support
- \rightarrow Helge Brands for CCD read-out and image processing
- → Christian Lüscher & Stefan Speckert for safety & interlock systms (EPS & MIS)
- → Nazareno Gaiffi & the SLS vacuum group for UHV & installation support
- → Elmar Zehnder & Beat Sommer for cabling & electrical installations
- \rightarrow Peter Oggenfuss & Roger Sommer for SLS floor coordination
- \rightarrow Tino Höwler & the alignment group for alignment of all components
- \rightarrow many more for their support and fruitful discussions

\rightarrow the audience for their attention, interest and patience