Twisting Wire Scanner

V.Gharibyan, A.Delfs, I.Krouptchenkov, D.Noelle, H.Tiessen, M.Werner, K.Wittenburg

DESY IBIC12, 4 Oct 2012, Tsukuba

Existing Solutions

Linear

Rotating

Driver Motors

Stepper Servo Rotating Linear (R&D)

Linear-Rotary Motor

Linear-Rotary Motor Parameters

Parameter	Value
Linear Motion	
Standard Stroke SS mm (in)	100 (3.94)
Peak Force E12x0 - UC N (lbf)	255 (57.3)
Cont. Force N (lbf)	51 (11.5)
Cont. Force Fan cooling N (lbf)	92 (20.7)
Force Constant N/A (lbf/A)	17 (3.8)
Max. Current@ 72VDC A	15
Max. Velocity m/s (in/s)	3.9 (154)
Position Repeatability mm (in)	±0.05 (±0.0020)
Linearity %	±0.10
Rotary Motion	
Peak Torque Nm (lbfin)	2 (17.7)
Constant Torque (Halt) Nm (Ibfin)	0.5 (4.4)
Max. Number of revolutions Rpm	1500
Torque Constant Nm/A (lbfin/A)	0.46 (4.07)
Max. Current@ 72VDC A	6.2
Repeatability deg	±0.05

Key bit scanner operation

Distance between beam & frame = $L\left(\arccos\frac{x}{L} - \arccos\frac{x}{l_w}\right)$

x = distance beam to rotational axis,L and Lw are vertical frame and wire sizes

3D tilted Key bit

For fast scans.

Improved space management.

Reduced inertia moment

Twisting scanner operation

The European XFEL: Birds View

E-XFEL accelerator Layout

E-XFEL Time Structure

E-XFEL beam size measurement

XFEL uses OTR and fast Wire Scanners

- to check and detect beam at critical places
- to match the optics and to measure Emittance at
 - Injector (OTR)
 - Bunch Compressor B1 and B2 (OTR)
 - in the Collimator (OTR/WS)
 - before the Undulator (WS)
- to measure slice parameters in combination with a
- transverse mode structure in Injector and Bunch Compressors B1 and B2

E-XFEL Wire Scanner

First Scanners with Linear Motors

@ development stage

E-XFEL Wire Scanner Specifications

Stroke	53mm
Measurement duration	5 sec / 4 scanners
Scanning modes	Fast (1m/s, <100ms/scan), Slow
Motor to pulse synchronization	<10 µs (RMS)
Position accuracy in a cycle	2 μm (RMS)
Width accuracy per cycle	2 % (RMS)
Wire positioning error	1 μm
Number of wires per fork	3 + 2 (3x90deg, +/-60 deg)
Wire material	Tungsten
Fork gap	15mm
Wire-wire distance (0deg)	5mm

 $20 - 200 \mu m$ beam sizes will be measured in a fast, triggered mode to scan bunch trains in a quasi-noninvasive way.

(Positive) Experience with Linear Motors

Dynamic parameters during the stroke

(Positive) Experience with Linear Motors

Triggered fast scan jittering magnitude

LinMot Fine Triggering sync-v02 Accuracy

LinMot intrinsic accuracy 100µm by Hall sensor

with External optical sensor 1µm (Heidenhain)

Vacuum / Bellows

Torsional Bellows

http://www.youtube.com/watch?v=C3WTtMCU3IE

alternative: Wobble Bellows

- >New type of "2 in 1" Wire-Scanner is proposed
- It combines translation and rotation for vertical and horizontal scans
- Fast triggered scans (1m/s) are possible in both directions (linear jitter < 1ms RMS)</p>
- Linear-Rotary motors and software (drivers) are available commercially
- Combined translational & rotational (twisting) bellows need R&D

