

Electron Beam Diagnostic System for the Japanese XFEL, SACLA

IBIC 2012 Oct. 1st, 2012 <u>H. Maesaka</u>, H. Ego, C. Kondo, T. Ohshima, H. Tomizawa, Y. Otake, RIKEN SPring-8 Center S. Matsubara, T. Matsumoto, K. Yanagida, Japan Synchrotron Radiation Research Institute

- Introduction
 - Current status of SACLA
- Design and Performance of Beam Diagnostic Instruments and their application for beam commissioning
 - RF-BPM and Multi-Strpline BPM
 - Screen monitor (OTR, YAG:Ce, Desmarquest)
 - Fast differential CT
 - Coherent radiation monitor to estimate the bunch length
 - Streak Camera
 - C-band Transverse deflector cavity
- Summary

Introduction

- SACLA
 - <u>SPring-8 Angstrom Compact Free Electron Laser</u>
 - XFEL is generated by Self-Amplified Spontaneous Emission (SASE)
- 8 GeV Linac and in-vacuum undulator beamline
 - CeB₆ thermionic electron gun (500 kV, ε_n : 0.6 mm mrad)
 - Velocity bunching and 3 bunch compressors to achieve > 3 kA peak current
 - C-band high-gradient accelerator (> 35 MV/m)
 - Short period in-vacuum undulator (λ_u : 18 mm)
 - Total facility length is 700 m.
- We started beam commissioning in March 2011 and observed the first XFEL radiation in June 2011.
- Public user experiments have been performed since March 2012.
 - Photon Energy: 5 15 keV
 - Wavelength: 0.08 0.25 nm

XFEL Spectrum and Profile

XFEL Gain Curve

- Nonlinear amplification
- Large power fluctuation in the amplification stage
- Small power fluctuation after the saturation

XFEL Intensity Stability (24 hrs.)

Beam Diagnostic System

- RF cavity BPM (RF-BPM) with position resolution < 1 μ m.
 - Electron beam must be overlapped with x-rays within 4μ m in the undulator section.
- Multi-stripline BPM for dispersive part to monitor the beam energy
- Screen monitor (SCM) with less than 10 μ m resolution.
 - Transverse beam profile measurement, emittance measurement etc.
 - OTR, YAG:Ce or Desmarquest screen with high-resolution imaging system.
- Fast differential current transformer (CT)
 - Bunch length measurement in the injector part
 - Bunch charge monitor without common-mode noise.
- Coherent radiation monitors
 - Coherent transition radiation (CTR) and coherent synchrotron radiation (CSR) monitor
- Streak Camera
 - Resolution: 300 fs
- C-band transverse RF deflector cavity system (RFDEF)
 - Resolution: 10 fs.
 - Bunch length is compressed to 30 fs.

SACLA

RF Cavity BPM

- TM110 dipole mode of Beam-induced RF field is used. $V = V_1 q x e^{j(\omega t + \phi) - t/T}$
- TM010 cavity determines the phase reference and the beam charge. $V = V_0 q e^{j(\omega t + \phi) - t/T}$
 - Beam arrival timing can be measured.
- Resonant frequency : 4.760 GHz (C-band)
- H. Maesaka et al., Nucl. Intrum. Meth. A 696, 66 (2012).

- IQ demodulator to obtain amplitude and phase
- Attenuator switch extends the dynamic range to 100 dB
 - From sub- μ m to a few mm
- Baseband signals are recorded by a 12-bit or 16-bit VME waveform digitizer.

Position Resolution of RF-BPM

- Position resolution was analyzed for 20 RF-BPMs in the undulator section
- Estimated position at a given RF-BPM was estimated from the other BPMs.
- Measurement and estimation were almost same. (left plot)
- Resolution is defined as the rms of the difference between the measurement and the estimation.
- Position resolution $< 0.6 \ \mu \,\mathrm{m} \,\mathrm{(rms)}$ (right plot)
 - 7 GeV, 0.1 nC

SACLA

Beam Trajectory Monitored by RF-BPM

Correlation between Beam position and XFEL intensity

- Correlation between the beam position (x,y-axes) and FEL intensity (z-axis)
- Easy to see what trajectory is the best.
- Injection orbit is locked to the best point by a feedback control.

Orbit Correction for Variable Gap Undulators

- RF-BPM data is used for the orbit correction for different undulator gap.
 - Beam orbit is corrected by steering magnets between undulators
 - Feed-forward table of steering magnets is prepared.
- Orbit reproducibility is within 10 μ m.

Beam Arrival Timing Resolution

- Beam arrival timing can be measured by the phase of the reference cavity (TM010).
 - Useful to monitor the timing drift of the machine
 - Experimental users can use this timing data
- Required temporal resolution: < 50 fs
- Arrival timing resolution: 27 fs (STD)
 - Measured by the reference cavities of two neighboring BPMs in the SCSS test accelerator.

Trend of the Beam Arrival Timing

- Drift of the arrival timing is appropriately obtained.
- Large drift is due to the rf phase drift in the injector section.
- Time difference between the entrance and the exit of the undulator beamline is caused by the drift of the reference timing transmission line due to the ambient temperature drift.

Multi-stripline BPM

- Multi-stripline BPM is used at the dispersive part of a bunch compressor (BC), because the horizontal beam size is large.
 - Beam position at BC is important for monitoring the beam energy.
 - 0.1 mm sensitivity is required for the beam energy measurement less than 0.1% resolution.
- Five stripline electrodes are equipped for each of top and bottom plane of the rectangular beam duct.
 - Characteristic impedance: 50 ohm
 - Stripline length: λ /4 of 476 MHz

Electronics for Multi-stripline BPM

- Impulse signal from the stripline electrode is converted to a wave packet of an rf signal by using a band-pass filter.
- Five signals are combined into one line by means of the group delay of other band-pass filters and rf power combiners.
- The rf signal is detected by an IQ demodulator and the baseband waveforms are recorded by VME waveform digitizer.
- Beam position is evaluated from the center of mass of the peak voltages of the pulse signals.

Arrival timing, beam energy and XFEL intensity

Trend graphs of the XFEL intensity, arrival timing and beam energy

Correlation plots with XFEL intensity

Screen Monitor

- OTR (stainless steel foil), YAG:Ce scintillator and Desmarquest targets were employed.
 - Target is mounted on a shaft driven by a pneumatic actuator.
- Custom-made lens system.
 - Some of the profile monitors are equipped with remote zoom system (x1 – x4).
- Resolution: 2 μ m (x4 optics)
- Images are taken by a CCD camera and transferred by CameraLink.

SACLA

Beam Profiles before BC3

Oct. 1st, 2012

Coherent OTR after BC3

- Intense coherent OTR was observed after BC3
 - Bunch length < 100 fs</p>
 - Stainless steel screen
- Target was changed to YAG:Ce
 - But, C-OTR was still observed from YAG:Ce

Mitigation of C-OTR Problem

- OTR is emitted forward within $\sim 1/\gamma$ radian.
- Scintillation of the YAG:Ce has no directional dependence.
- An OTR mask and a perforated mirror were tried to mitigate the C-OTR problem.
- C-OTR from the YAG screen is removed from the mask or the hole on the mirror.
- Details will be presented later
 - MOCC04 by S. Matsubara

SACLA

Comparison between RF-BPM and Screen Monitor

- Beam position from an RF-BPM is consistent with that from the adjacent screen monitor.
 - Even if the beam energy, profile were changed.
 - Error: < 10 μ m (STD)

Emittance Measurement

Normalized vertical emittance: 1.09 mm mrad after BC3 (1.4 GeV)

Fast Differential Current Transformer

Rise time: ~ 200 ps (10 – 90 %)

CT Data

- Bunch length in the velocity bunching region can be measured by using raw signals from the CT.
- Bunch length: 400 ps (FWHM) minimum.

CTR Monitor

- Coherent transition radiation from a fluorescent screen is detected.
- By using a cut off of a rectangular waveguide, this works as a single-shot spectrometer.
- In the injector part, about 10 GHz rf signal is obtained.
 - Bunch length ~ 100 ps

CTR Monitor Data

- The signal strength has a correlation with the bunch length.
 - Consistent with 1D simulation
 - Amplitude and phase of the sub-harmonic cavities can be determined

CSR Monitor

- CSR (Coherent Synchrotron Radiation) spectrum has a strong correlation with bunch length.
- CSR intensity was measured by a THz detector non-invasively.
- Pyro-electric detector or THz diode
- CSR from the 4th bending magnet of each bunch compressor is monitored.

CSR Data

- OTR light is transported to the klystron gallery and detected by FESCA-200 streak camera (Hamamatsu).
- For bunch length \gtrsim 300 fs (FWHM)

Streak Camera Data

- S-band phase was shifted to change the bunch length.
- Each figure shows 50-shot integrated image.
- Bunch length of < 1 ps (FWHM) was obtained.

C-band Transverse Deflecting Cavity

Electron bunch is pitched by transverse RF field. <u>RA</u>cetrack-shaped <u>Iris-coupling DE</u>flectio<u>N</u> structure (RAIDEN)

- To separate x- and y-mode
- H. Ego et al., "Transverse C-band Deflecting Structure for Longitudinal Phase Space Diagnostics in the XFEL/SPring-8 "SACLA", Proceedings of IPAC'11.
- Resonant Frequency: 5712 MHz
 - To obtain higher kick voltage
 - To fully utilize the C-band accelerator resource
- Backward traveling wave of HEM11-5 π /6 mode
- Deflecting voltage: 60 MV
 - When 1.7m x 2 cavities are driven by 50 MW klystron.

Performance of RF Deflector

- Temporal structure of a 1.4 GeV beam was stretched to 50 fs/mm at 10 m downstream of the deflector cavity.
- Resolution: ~ 10 fs
- YAG:Ce and OTR mask are used in the profile monitor.

- RF Cavity BPM
 - Position resolution: 0.6 μ m
- Multi-stripline BPM
 - Sufficient sensitivity to the energy measurement at BC
- Beam Profile Monitor
 - C-OTR was observed after BC3.
 - C-OTR was mitigated by YAG:Ce screen with a spatial separation method.
 - 1 mm mrad emittance was successfully measured.
- Fast Differential Current Transformer
 - Rise time: 0.2 ns
 - Bunch length measurement around 500 ps.
- CTR and CSR Monitor
 - Sufficient sensitivity to the bunch length
- Streak Camera
 - 300 fs (FWHM) bunch length was measured
- C-band Transverse RF Deflecting Cavity
 - Temporal structure measurement with 10 fs resolution
 - E-t phase space can be measured
- By using these instruments, X-ray lasing was achieved at SACLA.

Demanded spatial and temporal resolution to beam monitors & their numbers

	ີ່ ຼີ ⇔ີ 6 m x 4 ur	nits ລົບິ4m	n x 12 units m		RF-BPM, Q-mag: every 4 unit PRM, CT: every 8 units	s RF-BPM, Q-mag: every undula PRM, CT: every 2 undulators	XFEL			
0.5 MeV 1 A, 1 ns 0 m	30 MeV 50 A, 3 ps 20 m	0.4 GeV 0.6 kA, 300 70 m	$\frac{1}{2}$ of fs 3	ass 1.4 GeV kA, 30 fs 140 m	8 3k/ 4	GeV A, 30 fs O0 m	Dump 600 m			
PRM: 8 CT: 8	RF-B PRM CT: 3	PM: 7 : 5	RF-BPN PRM: 5 CT: 4	Λ: 7	RF-BPM: 13 PRM: 5 CT: 4	RF-BPM: 29 PRM: 20 CT: 11				
Kinds of Mo	nitor		Number							
RF cavity BPM			57	Το	To keep stable lasing, the beam					
Multi-stripline BPM			4] mon	monitors must measure a spatial					
Screen Monitor			43	resc	resolution of less than 1 mm for the undulator section, a 30 fs beam pulse width, and a beam arrival time of less than 30 fs					
Differential Current Transformer			30	the						
Transverse rf Deflector			1	bear						
Streak Camera by using OTR			3	arriv						
EO Sampling			1	afte	r the BCs.					
Waveguide Spectrometer			4 [~] 5							
CSR Pyro-detector			3		1500					

RIKEN

Oct. 1st, 2012

Detection Principle of RF-BPM

• TM110 dipole resonant mode of a pillbox cavity

$$E_z = E_0 \ J_1\left(\frac{\chi_{11}r}{a}\right)\cos\phi \ e^{j\omega t}$$

- E-field is linear around the axis
- Output voltage

• Need to discriminate in-phase component from quadrature.

SACLF

Imaging System

- Variable magnification: x1 x4
 - Lens and CCD camera are mounted on a motorized stage
 - x1 optics: Beam finding
 - x4 optics: Precise measurement

Spatial Resolution

- Spatial resolution of the imaging system was measured by using a grid distortion pattern.
- Spatial resolution: 2,5 μm (HWHM) - x4 optics
 - Consistent with lens simulation

OTR Target

- Thin stainless steel foil
 - Thickness: 0.1 mm
 - To reduce radiation damage of other components.
- 1mm-thick frame to support the foil
 - Ten 0.1 mm thick foils are stacked and unified by a diffusion bonding technique.
- Surface roughness: several 10 nm
- Flatness: 3 μm

Mitigation of Coherent OTR

- Target was changed to YAG:Ce
 - C-OTR was still observed from YAG:Ce
 - Scintillation of the YAG:Ce has no directional dependence.
- OTR mask
 - 5 mm width
 - OTR is emitted forward within $\sim 1/\gamma$ radian.
- C-OTR problem was mitigated by YAG:Ce and OTR mask.
- Details are presented later
 - MOCC04 by S. Matsubara

Perforated Mirror for COTR reduction

- C-OTR from the YAG screen is discarded through a hole in the mirror.
- Only scintillation light is reflected by the perforated mirror.
- When the beam is near the hole edge, C-OTR can be observed.

Common-mode Noise Reduction

• Common-mode noise was reduced to 1/10.

Fast Gate CCD to Remove C-OTR

- C-OTR is prompt radiation.
- Decay time of YAG:Ce scintillation is ~ 70ns.
- Fast gated CCD camera can distinguish them.
- ~ 1 ns resolution. (but very expensive…)
- First developed at FLASH
- M. Yan et al., "Beam Profile Measurements Using a Fast Gated CCD Camera and Scintillation Screen to Suppress COTR", Proceedings of FEL 11, THPB16 (2011).

Fast Gate CCD Data

Low-level RF Measurements

- Measured with a 7-cell model.
- 🍃 Pass band

SACL

- Y-mode is clearly separated from x-mode.
- Shunt impedance
 - Bead perturbation measurement
 - Simulation: $13.9 M\Omega/m$
 - Measurement: 13.7 MΩ/m

Beam Arrival Time Jitter observed by the RF Deflector

5/26/2011"

SACLA

Design

Total Deflecting Voltage	V_y	60	MV
RF deflecting phase	φ_a	0	degree
Fractional bunch length for X- ray oscillation	σz	200	fs
Beam energy at the deflector	$p_z c$	1.45	GeV
Resonant frequency	fa	5712	MHz
Type of structure		CZ	
Resonant mode		HEM11	
Phase shift per cell	βD	5π/6	rad
Group velocity	v _g /c	-2.16	%
Filling time	T_{f}	0.27	μs
Unloaded Q	Qa	11500	
Transverse shunt impedance	Z_y	27.8	MΩ/m

Data

		#1	#2	
Operation frequency [MHz] f_a		5712		
Resonant mode		HEM11-5π/6		
Unloaded Q	Q_a	8809	8948	
Group velocity	v_g/c	-0.0213	-0.0213	
Filling time [µs]	T_f	0.269	0.269	
Attenuation parameter	τ	0.548	0.539	
Transverse shunt impedance [MΩ/m]	r	20.8	21.0	
VSWR		1.12	1.09	
Maximum accumulation of errors in phase-advance [°]		±7.5	±2.8	

- Race-track iris
 - Made by a precise milling machine
 - Electrochemically polished
 - Surface roughness: 1 μ m pk-pk
- Other part
 - Machined by a precise lathe with a diamond bit
 - Roughness < 1 μ m pk-pk

Waveform of CSR Monitor

- THz diode detector: ~10 ns
- Pyroelectric detector: ~10 ms

Electron Beam Timing Pick-up using EO Crystal

EO Sampling Results

~100 fs resolution is expected

Halo Monitor

Seen from on the axis

- To reduce the demagnetization of the undulator magnet.
 - Undulator magnet can be damaged by beam halo.
- Diamond detector is employed.
 - Sensitivity: 10 fC (10^{-14} C)
- Installed into the upstream of the undulator beamline.

Electronics of the Halo Monitor SACLA

Oct. 1st, 2012

Optical Fiber Beam Loss Monitor

- Scattered electrons emit Cherenkov radiation in an optical fiber.
- The Cherenkov light is detected by a photo-multiplier tube.
- Signal intensity \rightarrow Amount of beam loss (1pC sensitivity)
- Signal timing \rightarrow Position of beam loss

Electronics of Beam Loss Monitor

PMT: Hamamatsu H6780-02 with FC connector

ADC: CAEN V1729A Switched-Capacitor Digitizer 4 Channel, 14 bit, 2 GS/s (300 MHz bandwidth)

- Waveform is recorded by a VME AD board
- Beam loss is plotted as a function of the position.

MADOCA

MADOCA software framework

Event Synchronized Data Acquisition

- VME reflective memory board is used.
- In each VME crate, trigger number is counted and the data is synchronized by using this number.
- MySQL database is used.
- Capable of 60 Hz operation

Image Data Acquisition

- Image data is stored in a NFS storage and image tag information is recorded by MySQL.
- Realtime image is monitored by a GUI