The first electron bunch measurement by means of DAST organic EO crystals

> Y. Okayasu JASRI / SPring-8

H. Tomizawa, S. Matsubara, T. Sato, K. Ogawa and T. Togashi RIKEN Harima Institute

E. J. Takahashi RIKEN, The Institute of Physical and Chemical Research

> H. Minamide and K. Matsukawa RIKEN, ASI Tera-photonics laboratory

> > M. Aoyama Japan Atomic Energy Agency

A. Iwasaki and S. Ogawa The University of Tokyo

Contents

- 1) Introduction / motivation
- 2) Our history
- 3) Principle of the three dimensional Bunch Charge distribution (3D-BCD) monitor
- 4) Feasibility experiment of the 3D-BCD monitor
- 5) Damage investigation of the organic Pockels EO crystals
- 6) In the past and the future

Introduction / motivation

Keys to success the experiment
w/ HHG-seeded FEL amplification :
1) Full coherent light source
→ both temporal & spatial

HHG beam size : \$\$0.7 mm

2) Monochromatic amplification

- → specific harmonic order selected by undulator tuning
- 3) Jitter-free (probe laser HHG laser) synchronization w/ ultra-short laser pulse
- 4) Compact undulator (in-vacuum) design for short wavelength generation R&D for Feedback system
 - ightarrow HHG laser pulse, EO probe laser pulse

& electron bunch temporally & spatially overlapp

Test experiment successfully carried out on July 2012 @ SCSS, SPring-8

Details; S. Matsubara's poster (MOPA49)

Our history

In the past : FY 2006 : 3D-BCD concept proposed by H. Tomizawa

FY 2009 : 3D-BCD feasibility test w/ ZnTe succeeded (A. Maekawa)

FY 2011 : The first observation of EO signal w/ organic Pockels EO crystal (Y. Okayasu)

FY 2012 (first half) : User exp. w/ HHG-seeded FEL laser. Keep optimum overlap only for temporal direction between electron bunch and EO probe laser. HHG-seeded FEL hit rate increased by x100 comparing to previous experiment on 2008.

Principle of the 3D-BCD monitor

We introduce...

3 Dimensional Bunch Charge Distribution (3D-BCD) monitor.

- Non-destructive measurement
 → Merit of EO-sampling
- 2) Single-shot measurement
 → w/ multi-channel spectrometer
- 3) Real-time reconstruction
 → Linear-chirped probe laser
 w/ square-shaped spectrum
- 4) High temporal resolution : ≈30 fs [FWHM] (τ0 = 3 fs in FWHM, τc = 300 - 400 fs in FWHM)
 → Broadband (300 - 400 nm [FWHM]) probe laser w/ organic Pockels EO crystals

 5) 3D-BCD measurement
 → radially polarized & hollow-shaped probe laser
 w/ Pockels EO crystals radially surrounding electron beam axis

Longitudinal (temporal) detection

Temporal resolution is crucial issue.

So far, inorganic Pockels EO crystals;
ZnTe and GaP have been used for EO samplings.
→ Significant absorption @ 5 THz (ZnTe), 11 THz (GaP) [1] (equivalent to electric field from electron bunch)
→ temporal resolution limited by 110 – 130 fs (FWHM)
even w/ 300 – 400 nm (FWHM) of broadband probe laser pulse

Courtesy of K. Matsukawa, RIKEN

X. Zheng et al., Jour. Nanoel. Optel. 2 1 (2007)

Organic Pockels EO crystals, such as DAST (DAST : 4-N, N-dimethylamino-4'-N'-methyl stilbazolium tosylate) → transparent in 600 – 2000 nm → Absorption free in broadband frequency domain → ~30 fs (FWHM) of temporal resolution expected [2].

[1] G. Berden et al., Phys. Rev. Lett. 99 164801 (2007)
[2] X. C. Zhang et al., Appl. Phys. Lett. 61 3080 (1992)

Transverse (spatial) detection

Electric field from electron bunch :

$$E(r) = \frac{Q}{\left(2\pi\right)^{3/2} \varepsilon_0 cr\sigma}$$

Refractive index change (Δn) of isotropic EO media :

$$|\Delta n| = \frac{n_0^3}{2} \left\{ \xi_P E(r) + \xi_K E(r)^2 \right\}$$

Assuming that **Pockels EO effect is dominant**, then signal intensity at EO crystal (detection point) :

$$I = I_0 \sin^2 \left(\frac{\pi}{2\lambda} \Delta nL\right) = I_0 \sin^2 \left(\frac{\pi n_0^3 \xi_P E(r)L}{4\lambda}\right)$$

Phase retardation

Signal intensity modulation :

$$\Delta I = \frac{I_{ell} - I_{org}}{I_{org}}$$

Bunch charge : Q	100 pC
Bunch duration : σ	30 fs (FWHM), Gaussian
Pockels EO crystal	ZnTe
Crystal position from beam axis : r	2 mm
Crystal thickness : L	1 mm
Refractive index : n ₀	2.85
Pockels EO coefficient : ξ_P	3.97 x 10 ⁻¹² m/V
Sliced bunch size (rms)	r _{hol} : 80 μm, r _{ver} : 40 μm → 60 μm

Sliced bunch profiles in transverse :

ellipse (*ell*)

positions, not real scale in radial direction!

Max. 0.2 % of sig. int. modulation evaluated w/ 60 μm beam size.

ECE

 \rightarrow For 40 µm beam size (SACLA), *s*-wave spectrum must be measured instead of *p*-wave for higher S/N ratio.

Feasibility experiment @ Prototype Test Accelerator, SPring-8

Electron beam			Pulse width : 5 ps [FWHM] Bandwidth : 795 ± 4 nm [FWHM] Laser power : 5 µJ
Energy	250 MeV	Acc. tunnel wall	Rep. rate : 30 Hz
Bunch charge	30 – 420 pC		2" mirror
Bunch duration	300 fs (FWHM)		
Reputation rate	30 Hz		periscope (70)
Peak current	> 300 A		Oscilloscope
Probe laser		1/4 λ	P.D.
Bandwidth	5 nm (FWHM) @ 795 nm		pol EO Crystal
Pulse energy	5 µJ (40 µJ/cm²)		
Pulse duration	5 ps (FWHM)		
Linear chirp rate	0.6 ps /nm		OTR
Reputation rate	30 Hz	Electric bunch Charge : 0.42 nC	Streak camera
EO crystal (in case of ZnTe)		Rep. rate : 30 Hz	
Size	3 ^w x 4 ^H x 1 ^T mm ³		
Distance from electron beam axis	2 mm	election beam	pectrometer
Phase retardation	~50 degree		½ waveplate

EO signal intensity spectrum w/ organic Pockels EO crystal; DAST

Signal : single shot Background : average of 40 shots w/o electron bunch

The first observation w/ DAST.

- * Background double peaks
- → Diffusion at an EO chamber window (somehow, sapphire)
- * FAST temporal response
- → Phase retardation of DAST : ~200 deg (cf. ZnTe : ~50 deg)
- \rightarrow DAST is much sensitive for electric field than ZnTe
- * Spectrum structure around 794 798 nm → Bandwidth enhancement effect ? [3] or Bunch structure ? After 30 min. data taking, EO signal was disappeared. What happened...?

[3] P. Bolton, private communication.

DAST damage investigation @ RIKEN; illumination damage All figures courtesy of K. Matsukawa, RIKEN

In our experiment; Ave. laser pulse energy : 40 µJ/cm² Rep. rate : 30 Hz → Laser illumination damage won't be possible origin? → But our pulse width is 2 - 5 ps (FWHM)! → Further goal : ~500 fs (FWHM) Damage test w/ our experimental condition is now in process.

DAST damage investigation @ SPring-8; radiation damage

Dose measurement w/ Gafcromic films on EO chamber. Higher dose on beam ducts (I.D. φ23 mm) @ both ends. Electron halo ? Cascades?

Dose on DSAT crystal is evaluated to be... (18 + 34)/2 = 26 mGy/hr, Effective life time (signal obtained) : 0.5 hrs \rightarrow 13 mGy .

None of superficial changes recognized thru visual / microscopic checks.

Max. 5 mGy/hour Ave. 4 mGy/hour Max. 5 mGy/hour Ave. 3 mGy/hour

Summary

User experiment w/ HHG-seeded FEL laser started on July 2012 @ Test Accelerator Facility, SPring-8.

The first EO signal w/ organic Pockels EO crystal successfully observed.

Investigations of both laser illumination & radiation damage for the organic crystal now in process.

Further light source upgrades also in process → K. Ogawa's poster (MOPA20) for details

In the past and future :

IBIC 12

FY 2006 : 3D-BCD concept proposed by H. Tomizawa
FY 2009 : 3D-BCD feasibility test w/ ZnTe succeeded (A. Maekawa)
FY 2011 : The first observation of EO signal w/ organic Pockels EO crystal (Y. Okayasu)
FY 2012 (first half) : User exp. w/ HHG-seeded FEL laser. Keep optimum overlap only for temporal direction between electron bunch and EO probe laser. HHG-seeded FEL hit rate increased by x100.
FY 2012 (second half) : Realize 3D overlap and increase the hit rate by limit.
FY 2013 : Feasibility test of ultimate high resolution 3D-BCD monitor.

Thank you !

EO intensity spectra (ZnTe) VS. bunch charge

Electric field from electron bunch :

$$E(r) = \frac{Q}{(2\pi)^{3/2} \varepsilon_0 cr\sigma}$$

Refractive index change (Δn) of isotropic EO media :

$$|\Delta n| = \frac{n_0^3}{2} \left\{ \xi_P E(r) + \xi_K E(r)^2 \right\}$$

Signal intensity at EO crystal (detection point) :

$$I = I_0 \sin^2 \left(\frac{\pi}{2\lambda} \Delta nL\right) = I_0 \sin^2 \left(\frac{\pi n_0^3 \xi_P E(r)L}{4\lambda}\right)$$

Phase retardation

In calculation, I_0 is normalized by data w/ 0.28 nC. Intensity seems to be saturated beyond 0.28 nC. Below 0.14 nC, S/N of intensity spectrum degenerated.

B. Steffen, FLS workshop, Hamburg (2006)

As-grown surface

rocessed surface

DAST characteristics :

Crystal structure	Monoclinic
Melting Point	256 deg
Transparency region	720 – 3000 nm
EO coefficient	r111 = 82 pm/V @ 780 nm
Nonlinear optical coefficient	d111 = 230 pm /V @ 1550 um
Refractive indices	n1 = 2.40, n2 = 1.69, n3 = 1.62 @ 780 nm
Dielectric constants	e1 = 5.2, e2 = 4.1, e3 = 3.0
Hardness	Vickers 65