Keyword: shielding
Paper Title Other Keywords Page
MOCB03 Modeling and Performance Evaluation of DCCTs in SSRF instrumentation, storage-ring, booster, electromagnetic-fields 16
 
  • Z.C. Chen, Y.B. Leng, Y. Xiong, W.M. Zhou
    SSRF, Shanghai, People's Republic of China
 
  Direct Current Current Transformer (DCCT) is the most commonly used high precision current monitor in modern particle accelerators including Shanghai Synchrotron Radiation Facility (SSRF). Three types of noise have been observed in the output signal of the DCCT in the storage ring of SSRF: power line noise, beam current related narrow band noise and random square wave noise from nowhere. This article will discuss the noise removal algorithms in SSRF and the performance of the DCCTs afterwards.  
slides icon Slides MOCB03 [1.436 MB]  
 
MOPA21 Improvement of the SIAM Photon Source Storage Ring BPM System storage-ring, photon, feedback, operation 101
 
  • S. Klinkhieo, S. Boonsuya, P. Klysubun, S. Krainara, P. Songsiriritthigul, P. Sudmuang, N. Suradet, S. Tesprasitte
    SLRI, Nakhon Ratchasima, Thailand
  • J.-R. Chen, H.P. Hsueh, Y.-H. Liu
    NSRRC, Hsinchu, Taiwan
 
  This report describes the improvement of the Beam Position Monitoring (BPM) systems for the 1.2 GeV storage ring of the Siam Photon Source (SPS). The systematic studies and investigations for improving the machine performance, and storage ring BPM system has been carried out in the last few years. Some major technical problems have been found and solved. The inefficiency and unreliability of the original BPM system were also identified. They are mainly caused due to the use of low quality signal and improper installation of cables. Detailed descriptions of the replacement with the higher quality (lower loss and better interference shielding) BPM cables and implementation of a separated cable trays for the BPM cables, as well as the work on BPM electronic board calibration will be described. The measurement results before and after the improvement of the BPM system will also be presented.