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162.5 MHz HWR Cryomodule 
Magnetic Field Mapping 
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Presentation Overview 

 Recent History of Heavy-Ion Accelerator Cryomodules at Argonne. 

 

 Argonne’s Approach for Heavy-Ion Accelerator Cryomodules. 

– High Gradient.  

– Low Cryogenic Load. 

– Passive methods for  

     improving performance. 

– Compact. 

– Reliability. 

 

 Ongoing Work. 

 

 Concluding Remarks. 
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72.75 MHz QWR Cryomodule Leak Testing 



 Enable and preserve the low-particulate assembly of beam-line components. 
– Separate RF cavity and Insulating vacuum systems. 

 Long cryomodule with high-performance components 
– Maximize real-estate gradient. 
– Maximize operational reliability. 
– Minimize cryogenic loads: static and dynamic. 

 Compliance with U.S. DOE Pressure Systems Safety Requirements = ASME codes. 
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Cryomodule Design 
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Recent Argonne Cryomodule History 
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2009 
4.5K 7x b = 0.15 QWR and 1x Solenoid 

14.5 MV, limited by VCX fast tuners 
(21.1 MV would be limit if VCX did not limit 

cavity performance) 
4.6 m long x 2.6 m high x 1.1 m wide 

2014 
4.5K 7x b = 0.077 QWR and 4x Solenoid 

>17.5 MV 
5.2 m long x 2.9 m high x 1.1 m wide 

Highly optimized cavity design. 

On-Going 
2K 8x b = 0.11 HWR and 8x Solenoid 

>17.5 MV 
6.2 m long x 2.2 m high x 2.2 m wide 



Optimized Components 

Optimization of multi-dimensional systems. 
 Cavities: 

– RF Performance. 
– Fabrication. 
– Polishing. 
– Cleaning. 
– Assembly. 
– Compliance with 
      relevant safety standards. 
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 Solenoids: 
– Integrate Focusing Solenoids 
     with Return and Steering Coils. 
– Maximize real-estate gradient 
     via magnetic integration. 
– Superconducting and operating at 
     the same temperature as the cavities. 
– No additional magnetic shielding for 
     the solenoids/cavities. 

 Cryomodules: 
– Long, 4-7 meters. 
– Not much larger than the accelerator components require. 



Cavity Optimization – RF Performance 
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Simple               Complex 
            Lower Peak Fields 

Parameter Straight Cylinders Conical Units 

Epeak/Eacc 5.8 5.0 

Bpeak/Eacc 95 71 Oe/(Mv/m) 

G = Rs·Q 16.5 25.9 W 

Rsh/Q 509 568 W 

Use free space which 
already exists. 

Gain the voltage of ~2 
cavities without 
increasing 
cryomodule length. 

E-Field H-Field 
QWR & Cryomodule 



Electromagnetic Design 

 Tapered inner/outer conductors increase the performance of these 
cavities relative to using straight cylinders by 25-35% for Bpeak/Eacc. 

 First tapered QWRs designed, built, and tested in the world. 
 RF Design does not stop here. 
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Cavity Type QWR HWR 

Freq. (MHz) 72.75 162.5 

b 0.077 0.112 

leff (cm, bl) 31.75 20.68 

Epk/Eacc 5.2 4.7 

Bpk/Eacc (mT/(MV/m)) 7.6 5.0 

QRs (W) 26.4 48.1 

Rsh/Q (W) 587 272 40 cm 
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Cavity Performance – QWR Beam Steering 

9 
9 September 2015 

13th International Conference on Heavy Ion Accelerator Technology b= 0.05     0.07       0.09      0.11 

Y
’ ct

r (
m

ra
d

) 

 -
0

.2
   

   
   

 0
   

   
   

0
.2

 2.5-2.5 deg    1.8-1.8 deg 
2.2-2.2 deg     1.8-2.2 deg 

1.9 deg             2.2 deg               1.7 deg 

 

• QWR = Beam Steering due to 
residual magnetic field. 

• Leads to emittance growth and 
subsequent beam loss. 

• Corrected by deflecting E-field from 
tilting drift tube faces. 

• Adding tilt to forming dies. 

• No Additional Part Cost. 

QWR 



Cavity Performance – Microphonic Tuning 
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QWR In. Cond. Disp. (mm) 0 0.5 

Δfp-p (Hz) 0 3 
(J.R. Delayen 1987) 

 Electromagnetically center the 
inner conductor. 

 Reduce microphonic frequency 
error due to pendulum mode 
of inner conductor. 

 Bend inner conductor to maximize 
frequency = Passive, low risk and 
simple to implement. 

QWR – Beam Line 
Displacement 

HWR QWR f0 vs. Displacement 
𝑓0 𝑧 = −1.643 ∙ 𝑧2 − 0.828 ∙ 𝑧 

Change in Frequency with Displacement 
𝑑𝑓0(𝑧)

𝑑𝑧
= −3.286 ∙ 𝑧 − 0.828 

𝑑𝑓0(𝑧)

𝑑𝑧
 
𝑧=0

= −0.252 𝑚𝑚 

For a 1mmp-p 
pendulum 
vibration. 



Cavity Testing – QWR Off-Line Microphonics 
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Cavity Fabrication 
 Electrostatic Discharge Machining (EDM) = No risk of inclusions. 

 Electron Beam Welding in High Field Regions = Keyhole = Less Heat. 

 Cavity beam bore cut after all fabrication is finished, including helium jacketing. 

 Cavity electropolishing after all fabrication is finished, including helium 
jacketing and beam bore cut. 

 Hydrogen degassing @ FNAL = Reduce Q slope. 
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EDM of Port Bore 

EDM Toroid Trim 



Beam Aperture Alignment 

 Design beam aperture = f33.0 mm HWR. 
 Wire-EDM bore of the beam aperture gives 

very accurate results: 
– Aperture diameter tolerance ±0.04 mm. 
– Aperture Pitch and Yaw tolerance <0.10. 

 Wire-EDM is done prior to helium jacketing.  
This is expected to perturb the Pitch and Yaw 
alignment by <0.10. 
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Beam Aperture Wire-EDM  

Cut-Away View of 

Cavity Model 

40 cm 

Beam Aperture 

Finished Beam Aperture 

Wire Start/Stop <0.015 mm deep 



Cavity Polishing and Cleaning 
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Unique ANL Low-Beta Cavity EP Tool 

All polishing done after fabrication is finished. 



Cavity Testing – 4 of 8 QWR Off-Line Testing 
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Cryomodule Assembly – Maximizing Cavity Performance 

13th International Conference on Heavy Ion Accelerator Technology 

9 September 2015 

Clean Clean 

Dirty Dirty 
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Cryomodule Assembly – Alignment 
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Final Alignment Errors 
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Load Measured Value 

Liquid Helium 12 W (Static) 

Liquid Nitrogen 160 W (Static) 

Helium System Static Boil-Off 

Dynamic Load for 2.5 MV Operation Measured Value 

Single Cavity Dynamic Load (Measured Off-line 4x) 5 – 8 W (Dynamic) 

Measured Cryomodule Dynamic Load 33 W (Dynamic) 

Cavity Testing – QWR On-Line Performance 
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Cavity Performance – HWR Quadrupole Asymmetry 

13th International Conference on Heavy Ion Accelerator Technology 

• HWR = Quadrupole field X-Y asymmetry.    

• Corrected by symmetrizing center 
conductor around beam aperture. 

• Again solution made in shaping forming 
dies. = No Additional Part Cost. 

Race Track 

Doughnut 

X-Y Asymmetry 

Symmetric 

HWR Center Conductor Halves 

Race Track (Top) and Doughnut (Bottom) Asymmetry 

Blue = X emittance. 

Red = Y emittance. 
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Cavity Testing – HWR Off-Line 
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2K Design Goal 

2W Cryogenic Load 



HWR Magnetic Field Sensitivity 

 To decrease the accelerator lattice 
length we have integrated x-y steering 
coils into the focusing solenoid package. 

 Important design issue: 

– Minimize stray field @ the RF cavity 
to prevent performance degradation 
due to trapped magnetic flux. 

 Measured RF surface resistance with a 
sensitivity of ±0.1 nOhm before and 
after each quench of the cavity. 

 The cavity was quenched with the 
solenoid and the steering coils 
energized. 

 No quantifiable change to the cavity RF 
surface resistance. 
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40 cm 

HWR 

HWR with Solenoid 

Solenoid 

Cavity quenched x10 at 

this field level. 
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Concluding Remarks 

 Highly optimized cavities and solenoids. 

– RF Performance improved by increase volume over which the magnetic 
energy is distributed. 

– Minimal to no sensitivity to helium pressure fluctuations or pendulum motion 
of inner conductors. 

– Many passive design features with little risk: 

• Beam Steering. 

• Inner conductor electromagnetic centering. 

 Improved cavity fabrication and processing. 

 High real-estate gradients achieved and improving, > 3.3 MV/m @ b = 0.077. 

– Low cryogenic loads for high real-estate gradient, 33 W dynamic and 12 W 
static to 4.5K for 7 cavities and 4 solenoids over 5.2 meters. 

 Working on next cryomodule, our first for 2K.  Initial results promising for >2 
MV/cavity operation with low dynamic loading (<1 W per cavity). 
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