

Operation of the ATLAS Superconducting Accelerator for Heavy lons

Matthew Hendricks ATLAS Operations Supervisor

September 9, 2015

Outline

- Overview the ATLAS accelerator
- Staffing and beam diversity
- Accelerator startup
- Accelerator configuration logging and mass to charge scaling
- Tuning radioactive ion beams (RIB) from both in-flight production and CARIBU ion source, as well as associated diagnostics
- Maintenance
- Problems/Troubleshooting

Floor Plan and Location

Overview

- ATLAS is world's first superconducting (SC) heavy-ion accelerator
- It is DOE's designated National User Facility for stable, low energy, ion beams with a focus on nuclear physics research
- Made up of 3 distinct accelerator sections, totaling 50 SC RF resonators providing an effective total voltage of 52MV, coupled with 26 SC solenoids
- 21.6% of beam time is devoted to radioactive ion beams, either from CARIBU or "inflight"

- Typical beam currents are in the range of 5 to 500 electrical nanoamps, however demonstrated 35 electrical microamps through PII
- ATLAS Operations budget is ~\$10M/year
 - 21 Full Time Employees

ATLAS Beams for FY2014

Stable ion species provided by ATLAS range from protons through uranium

- 29 unique ion species delivered in FY2014
 - 2 of those 29 were radioactive ion beams from CARIBU
 - 3 of those 29 were in-flight produced radioactive ion beams (RIB)

ATLAS Beams for FY2014

ATLAS Staffing and Operator Training

- 21 Full time employees & 2 part time employees
 - Divisional Groups: Physicists (2), Operations (8), Ion Source(2), Control System (2), Cryogenic (2), Mechanical (2), Electronic (3)
- 7 qualified operators keep the accelerator running 24 hours a day, 7 days a week
- Almost 50% of shifts are staffed by 2 operators, 1 operator is the chief shift operator, the other is safety watch.
- Every operator is required to work each shift at least once per 6 months
- When only one operator is on shift the safety watch is fulfilled by the experimenter
- On average 40 safety classes must be kept up to date for each operator
- New operator qualification consists of 6-8 "classroom session", the rest is on the job
- Operator qualification typically takes 6 months, made up of 2 exams and 1 practical

	Shift	Mon.	Tues.	Wed.	Thur.	Fri.	Sat.	Sun.
Week 1	0000-0800	BB	GD BB	GD BB	GD BB	GD	GD	BB
	0800-1600	NP	RB NP	RB NP	RB NP	RB	RB	NP
	1600-2400	TR	TR SB	TR SB	TR SB	SB	SB	TR
Week 2	0000-0800	BB	GD BB	GD BB	GD BB	GD	GD	BB
	0800-1600	NP	RB NP	RB NP	RB NP	RB	RB	NP
	1600-2400	TR	TR SB	TR SB	TR SB	SB	SB	TR

New Experiment Startup and Beam Tuning

- "Authorization to Operate" form insures experiment is reviewed and authorized prior to delivering beam to the user.
- Reconfigure all elements of the accelerator for each experiment
- Two options for accelerator startup
 - Use a previous accelerator configuration from a computerized library
 - Useful for either exact configuration or scaled configuration
 - Saves time
 - Establish a new accelerator configuration
 - Time consuming
 - Typically achieves best beam quality

Accelerator Device Logging

- Offline computer (Paradox) records entire accelerator configuration and beam parameters
- Creating a library of old accelerator configurations
- Basis for scaling accelerator

Accelerator Scaling

- Paradox allows scaling of all accelerator devices
 - Resonators scaled by A/q
 - Scaling is limited to ±15% of saved configuration's mass to charge
 - Due to lack of linearity in setting resonator phase and amplitude
 - Scaling also limited by resonator amplitudes
- Scaling of magnetic devices based on magnetic rigidity
- Functionality critical for setup of CARIBU beams, or performing accelerator mass spectroscopy (AMS)

Load a Complete Tune:

EXPERIMENT #	# 1453-40Ar	Atomic Atomic Charge State: 10/10/2014 0/:29:52 Mass Number Q1 Q2 Q3 Source Injector Target Area 40 18 7 > 7 ECR1 > PII > C4							
Select 1 Tune Option	Beam Parameters Note: To ensure proper calcuations, be sure to enter the New Atomic Number first.								
 Booster Atlas Target Area 2 Complete VIEW ONLY 	Atomic Number Original 18 <u>New</u> 40	Source Original New Mass: 39.9624 100 Charge State: 7 18 Energy (MeV): 1.220 3.050 Edit Energy: 1.220 ECR Ext. (kV): 35.994 Source 7 Mass: 56.249 Image: 7.031 Charge State QI: 7.031 ECR Ext. (kV): 147.147 Mass: 56.249 Terminal Voltage: 7.031 New 0.970 Old 0.998 Old 0.997 Scale Eactors Scale Eactors							
CANCEL	Booster	Resonator Solenoid Beamline N/A N/A 0.97234 Resonator Solenoid Beamline Terminal Volt 0.97234 Output Atlas or Target Area 2							
Technology - Yokohama, Japan		Sept. 09, 2015 9							

10/11/2011

M. Hendricks

07 00 50

Heavy Ion Accelerator

Accelerator Modifications - Since 2009

- Pioneered heavy ion accelerator technology in 1978, averaged 0.75MV accelerating voltage per resonator
- World record high 2.0MV accelerating voltage average per resonator
- Separate cavity and cryostat vacuum
- No degradation of quality or gradients since July 2009

- Operates with greater than 90% reliability
- Bunches, focuses, and accelerates at the same time
- Beam emittance is maintained, and therefore allows good transmission

- World record 2.5MV accelerating voltage average per resonator
- Only 45W of power into 4.5K liquid helium system for entire cryostat during operation

Accelerator Modification (EBIS) - Early 2016

Electron Beam Ion Source (EBIS)

- Replaces existing ECR-Charge Breeder
- Approximately doubles charge breeding efficiency versus ECR-Charge Breeder
- Provides very clean background in the A/q range of CARIBU ion beams

In-Flight Radioactive Ion Beam (RIB) Production

- 1. Tune stable beam to target
 - A. Typically used to calibrate detector
- 2. Insert gas cell or Be foil into beamline
 - A. Stable beam interacts with deuterium or Be to change proton/neutron ratio
- 3. Retune stable beam to target
 - A. Energy will be degraded some after passing through gas cell/Be foil
- 4. Tune RIB from gas cell to detector system
 - A. Scale devices after target based on expected rigidity
 - B. Solenoid after gas cell focuses scattered RIB
 - C. Rebuncher before target: time focuses at production target
 - D. Rebuncher after target: time focuses at RIB "sweeper"
 - E. RIB "sweeper" in some cases can be used to remove undesirable beam with similar rigidity but different timing

Sept. 09, 2015 M. Hendricks

Accelerator Modifications (AIRIS) - Before 2017

- Argonne In-flight Radioactive Ion Separator (AIRIS)
 - Dedicated mass separator
 - Improved transmission of RIB produced in-flight
 - Provides new regions of RIB's, higher mass and further from stability
 - RIB separation does not rely on beam transport optics, making it available to more target areas than current RIB production location
 - RF sweeper to remove beam tails

CARIBU Radioactive Beam Tuning

- Initial tuning with "guide beam" having a similar mass to charge ratio
- Scale entire accelerator for mass to charge ratio difference
- Use Beta Detectors and rate meter for final fine tuning
 - Radioactive beams intensities < 10⁵ particles/second, use of specialized detectors and electronics necessary
 - ECR stable backgrounds force use of β decay to tune RIB
 - 8 different beta detectors located through the accelerator

Beta Detector

Maintenance

- One major *planned* maintenance period per year (~4 weeks in length)
 - Address annual safety testing and inspections
 - Cryostat repairs
 - Cryogenic system repairs
 - Any other major repairs
- Run to failure philosophy
- Minor maintenance work handled during startup day
- ATLAS has been averaging 91.9% reliability over the last 6 years
 - Flexible accelerator design allows 'work around' failures on the fly.
- Recent upgrades to the accelerator have made reliability better, but those upgrades require more diverse expertise to achieve.

Troubleshooting - Problems

- Operators expected to handle (at least diagnose) almost any problem
 - Examples: resonator problems, He compressor trips, power supply exchange, water/air leaks/blockage, vacuum problems
 - Ask for assistance if the problem lasts longer than one hour
- Heavy reliance on system experts
 - All system experts are on call at all times
- Recent LHe plumbing failure inside a cryostat
 - Resulted in ~4 hours of downtime before beam delivery resumed
 - Loss of ~3MV from entire accelerator
 - 15-35% transmission loss through affected cryostat until repaired
 - Demonstrates nimble abilities of small knowledgeable workforce

Staffed hours for 2014

Summary

- 21 full time employees to operate and maintain the accelerator
- Accelerator in operation 24 hours, 7 days a week
- Operators perform maintenance tasks as well as tuning beam
- Accelerator configuration library and scaling saves time
- 3 major improvement projects in last 5 years; 2 additional improvements planned or in process within the next 2 years
- In-Flight Radioactive Ion Beam production is well understood and upcoming upgrade will improve yields, expand available species, and increase target areas
- CARIBU Radioactive beam tuning becoming standard; it is more complicated than stable beam tuning
- One scheduled 4 week maintenance period per year, run to failure philosophy, perform repairs as needed

THANK YOU