Charge Breeding Experiences with an ECR and an EBIS for CARIBU

- ECR and EBIS charge breeders
- ECR charge breeding results and investigations
- Commissioning of EBIS charge breeder

ECR charge breeding concept

- Solenoid coils provide axial confinement
- Permanent magnet hexapole provides radial confinement
- Plasma excited by RF typically in the 10-14 GHz range and <1 kW
- Ion confinement via plasma potential generated by trapped electrons
- Highly charged ions produced via step-wise ionization with energetic electrons

ECR charge breeder performance

EBIS charge breeding concept

- Trap electrodes provide axial ion confinement
- Electron beam provides radial ion confinement
- Strong solenoid coil for electron beam compression
- Highly charged ions produced by bombardment from a fast, dense mono-energetic e⁻ beam

EBIS charge breeder performance

ECR and EBIS charge breeding comparison

	ECR		EBIS
	≤19%	Efficiency	≤25%
	3.0 - 5.5	A/Q	2.5 - 5.0
	10-20 ms/q	Breeding time	10 - 100 ms (total)
	рµА (~10 ¹³ pps)	Maximum injected beam	pnA (~10 ¹⁰ pps)
	> pA	Contamination	< pA
	CW or pulsed	Mode of operation	Pulsed

CARIBU - Californium Rare Ion Breeder Upgrade

- ²⁵²Cf fission source provides radioactive species
 - $T_{1/2}$ =2.6 a 3.1% fission branch
 - 1.7 Ci source installed May 2014
- Helium gas catcher + μRFQ's
 - Energy spread of 1 eV
 - Emittance of $3 \cdot \pi \cdot mm \cdot mrad$
- Stopped beams and reaccelerated beams up to 15 MeV/u
- Highest yields are in the mid-mass species

CARIBU - Californium Rare Ion Breeder Upgrade

- ²⁵²Cf fission source provides radioactive species
 - $T_{1/2}$ =2.6 a 3.1% fission branch
 - 1.7 Ci source installed May 2014
- Helium gas catcher + μRFQ's
 - Energy spread of 1 eV
 - Emittance of $3 \cdot \pi \cdot mm \cdot mrad$
- Stopped beams and reaccelerated beams up to 15 MeV/u
- Highest yields are in the mid-mass species

ECR charge breeder

- Open hexapole structure
 - Improved pumping to plasma chamber region: 2x10⁻⁸ mbar
 - Radial RF injection
- Multiple frequency operation
 - Klystron: 10.44 GHz, 2 kW
 - TWTA: 11→13 GHz, 0.5 kW
- Stable beam source used for guide beams and breeding studies

Injected ion penetration

• Cut outs for waveguides

Injected ion penetration

- ¹³³Cs⁺ ions, V₁₊: 30 kV, ΔV: -10 V
- 3D field calculations Computer Simulation Technology Electromagnetic Studio
- Simulations utilized running conditions for coils, hexapole, and potentials
- No plasma or collision effects included in simulation

Multiple frequency heating

Charge breeding performance

	lon	Charge State	Efficiency (%)	A/Q
	²³ Na	7+	10.1	3.29
	³⁹ K	10+	17.9	3.90
	⁸⁴ Kr	17+	15.6	4.94
	⁸⁵ Rb	19+	13.7	4.47
	¹¹⁰ Ru (1+) t _{1/2} = 11.6 s	22+	11.8	5.00
	¹³⁵ Te (1+) t _{1/2} = 19.0 s	26+	5.0	5.19
	¹²⁹ Xe	25+	13.4	5.16
	¹³² Xe	27+	14.1	4.89
	¹³³ Cs	26+	14.7	5.11
	¹³³ Cs	27+	13.5	4.93
	¹⁴¹ Cs (1+) t _{1/2} = 24.8 s	27+	12.3	5.22
	¹⁴² Cs (1+) t _{1/2} = 1.69 s	27+	7.3	5.26
	¹⁴³ Cs (1+) t _{1/2} = 1.79 s	27+	11.7	5.30
	¹⁴³ Ba (2+) t _{1/2} = 14.3 s	27+	14.7	5.30
	¹⁴⁴ Ba (2+) t _{1/2} = 11.5 s	28+	14.3	5.14
	¹⁴⁶ Ba (2+) t _{1/2} = 2.22 s	28+	13.3	5.21
Vondrag	sek HIAT 2015 Septem	ber 9, 2015		

Charge breeding time

Δ

Charge breeding time - ¹³²Xe

• Oxygen plasma, single-frequency heating – TWTA 11.762 GHz

Charge breeding time - ¹³²Xe

Oxygen plasma, single-frequency heating – TWTA 11.765 GHz ($\Delta f = 3$ MHz)

Breeding efficiency and rise time - RF frequency

- Xe-132 from RF discharge source
- Oxygen plasma, single-frequency heating TWTA only

Breeding efficiency and rise time - RF frequency

- Xe-132 from RF discharge source
- Oxygen plasma, single-frequency heating TWTA only

ECR background beams - A/q region of interest

ECR background beams - A/q region of interest

No measureable background current with picoammeter

SBD – silicon barrier detector

ECR background beams - A/q region of interest

ECR contamination for ¹⁴⁶Ba²⁸⁺

	Extraction	Platform	Atomic	Atomic	Charge	M₀/δM	Threshold:	300.0
δΒρ	Voltage, kV	Voltage, kV	# or Symb.	Mass (p+n)	State	Include Radioactive		
0.010	36.000	130.000	ba	146	28	lons y/n (default - y):		n
							(Optional)	
				Calcı	ulate 🔿			
		·	FC			D D'	Pt 10	0.0040004
	Ion Atom	IIC NUMBER:	1/15 03028			Beam Rigi	Eigld kG:	1.5620710
<u> </u>	Magnet	Radius m	0.400			Unner	Be kG-m	0.63108
	Total flight	time nsec :	9582.83			Lower	Bo, kG-m:	0.61858
		,					- P ,	
ID	Mass	Q	Abund.	Br, kG-m	B, kG	δΒ	M0/DM	dTime, ns
Zn	68	13	18.80	0.6256	1.5640	0.0020	395.06	12.1
Ba	130	25	0.11	0.6239	1.5597	-0.0023	-335.28	-14.3
Ba	136	26	7.85	0.6257	1.5644	0.0023	340.59	14.1
		********	Lower Prot	pability Conta	aminants	********		
Mg	26	5	11.01	0.6239	1.5598	-0.0023	-341.15	-14.1
	47	9	7.30	0.6251	1.5628	0.0008	1028.61	4.7
So	73	14	23.50	0.0240	1.5010	-0.0004	-1750.00	-2.7
Se Kr	70	15	23.30	0.0230	1.5595	-0.0026	-301.11	-15.9
Zr	94	13	17.33	0.0250	1.5535	0.00020	998 12	4.8
Mo	94	18	9 25	0.6251	1 5628	0.0008	1011.36	4 7
Ru	99	19	12.70	0.6245	1.5611	-0.0009	-837.89	-5.7
Ru	104	20	18.70	0.6238	1.5596	-0.0025	-315.39	-15.2
Pd	104	20	11.14	0.6238	1.5596	-0.0025	-314.07	-15.3
In	115	22	95.70	0.6255	1.5637	0.0017	469.20	10.2
Sn	115	22	0.40	0.6255	1.5637	0.0017	470.23	10.2
Sn	120	23	32.40	0.6249	1.5623	0.0002	3879.92	1.2
Te	120	23	0.10	0.6249	1.5623	0.0002	3660.72	1.3
Te	125	24	7.14	0.6244	1.5610	-0.0011	-700.09	-6.8
Te	130	25	33.80	0.6239	1.5597	-0.0023	-335.24	-14.3
Xe	130	25	4.10	0.6239	1.5597	-0.0023	-332.91	-14.4
Xe	141	20	0.90	0.6253	1.5632	0.0023	676.01	7.1
Cs	141	27	0.00	0.0253	1.5032	0.0012	698.15	6.9
La	141	27	0.00	0.6253	1.5631	0.0011	731.10	6.6
Ce	136	26	0.19	0.6258	1.5644	0.0023	338.42	14.1
Pr	141	27	100.00	0.6252	1.5631	0.0010	743.91	6.4
Nd	146	28	17.19	0.6248	1.5620	-0.0001	-8499.14	-0.6
Sm	146	28	0.00	0.6248	1.5620	-0.0001	-8492.22	-0.6
Eu	151	29	47.80	0.6244	1.5609	-0.0011	-680.11	-7.0
Gd	156	30	20.47	0.6240	1.5599	-0.0022	-362.13	-13.2
Dy	156	30	0.06	0.6240	1.5599	-0.0021	-363.96	-13.2
Dy	162	31	25.50	0.6255	1.5638	0.0017	447.40	10.7
Er	162	31	0.14	0.6255	1.5638	0.0018	444.95	10.8
Er	107	32	22.95	0.6247	1.5020	0.0007	2252.19	4.4
Hf	172	34	18.60	0.0247	1.5010	-0.0002	-687 25	-7.0
W	182	35	26.30	0.0244	1.5601	-0.0020	-392.58	-12.2
Ŵ	183	35	14.30	0.6257	1.5644	0.0023	339.46	14.1
Os	188	36	13.30	0.6254	1.5634	0.0014	566.53	8.5
Ir	193	37	62.70	0.6250	1.5626	0.0005	1524.43	3.1
Pt	198	38	7.20	0.6247	1.5618	-0.0003	-2465.02	-1.9
Hg	198	38	10.10	0.6247	1.5617	-0.0003	-2430.98	-2.0
TI	203	39	29.52	0.6244	1.5610	-0.0011	-706.52	-6.8
Pb	208	40	52.40	0.6241	1.5602	-0.0019	-421.00	-11.4
Bi	209	40	100.00	0.6256	1.5640	0.0019	409.92	11.7
U	234	45	0.01	0.6242	1.5604	-0.0016	-478.77	-10.0
U	235	45	0.72	0.6255	1.5638	0.0017	457.07	10.5

- Solid species surface and bulk contamination
 - Plasma chamber liners
 - Sand blasting
 - High-pressure rinsing
 - CO₂ "snow" cleaning
 - High-purity aluminum coating

- Solid species surface and bulk contamination
 - Plasma chamber liners
 - Sand blasting
 - High-pressure rinsing
 - CO₂ "snow" cleaning
 - High-purity aluminum coating

- Solid species surface and bulk contamination
 - Plasma chamber liners
 - Sand blasting
 - High-pressure rinsing
 - CO₂ "snow" cleaning
 - High-purity aluminum coating

- Solid species surface and bulk contamination
 - Plasma chamber liners
 - Sand blasting
 - High-pressure rinsing
 - CO₂ "snow" cleaning
 - High-purity aluminum coating

Background reduction - Aluminum coating

- Cleaned chamber with CO₂
- Used W coil with high-purity (99.999%) aluminum wire
- Source pressure: 5.0e-7 Torr
- Wall covered with 1 micron layer
- Vented to oxygen
- Not all surfaces were adequately coated

Background reduction - CO₂ cleaning

Background reduction - CO₂ cleaning

Background reduction - Aluminum coating

• Work remains to be done

CARIBU - Californium Rare Ion Breeder Upgrade

CARIBU - Californium Rare Ion Breeder Upgrade

CARIBU - EBIS charge breeder

- EBIS system will be moved on-line in 2015, replacing the ECR charge breeder
- Addition of an RF cooler-buncher and MR-TOF for beam preparation

EBIS charge breeder

- Based upon RHIC Test EBIS design
- EBIS was commissioned off-line
- EBIS will be moved on-line in late 2015 expected to have entire system ready in early 2016

EBIS design parameters				
Solenoid field	6 T			
IrCe cathode diameter	4 mm			
Electron beam current	2.0 A			
Electron beam energy	5 keV			
Electron beam radius	330 μm			
Electron beam density	577 A/cm ²			
Normalized full acceptance	0.024 π·mm·mrad			
Trap capacity	30 nC			
Injection time	10 µs			
Repetition rate	30 Hz			
Duty cycle	90 %			

• First results in May 2014

• 10% breeding efficiency into Cs¹⁴⁺

- First results in May 2014
- 10% breeding efficiency into Cs¹⁴⁺

- Latest results several small leaks fixed, system baked out
- 20% breeding efficiency into ¹³³Cs²⁸⁺

Overall background - ReA EBIT

Courtesy of A. Lapierre. T. Baumann, NSCL, MSU

Overall background - REX-EBIS

- Residual gas spectrum
- Neon trap gas
- 15 ms breeding
- 160 mA e⁻ beam

Origin

residual gas

More difficult to find A/q regions free of contaminants for low Z such as Li, Be, B

			0
	4.2	10	buffer gas
	4.222	18	residual gas
	4.272	22	drift tubes
	4.25	23	NEG strips
	4.2	29	anode and collector
	4.21, 4.2	36	residual gas
	4.272	40	NEG strips
	4.212	57	cathode
nts	that can be pres	ent at other A/q a	are:
			residual gases
			cathode
			NEG strips, stainless stee
			stainless steel
			stainless steel
			stainless steel

lon injection and extraction

- EBIS is an inherently pulsed device
 - Typical extraction pulse is 10-20 μs
 - High instantaneous rates can lead to detector dead time and pile up
 - REX-ISOLDE "15 minutes of delivered beam in every 24 hours of beam time"

41

Ion extraction schemes - ReA EBIT

- Several schemes to reduce instantaneous rate on target
 - Linear or exponential Ramp scheme for slow continuous release of trap ions
 - Train or Comb scheme releases ions in multiple discrete pulses
- Cooler/buncher was recently installed to allow injection of bunched ion beams

Multi-beam scheme

- The simultaneous acceleration of two beam species
 - One stable from the ECR and one radioactive from CARIBU-EBIS
 - A/q required to be within 1% of each other

- The simultaneous acceleration of two beam species
 - One stable from the ECR and one radioactive from CARIBU-EBIS
 - A/q required to be within 1% of each other

Summary

- The ECR charge breeding program at ANL was successful
 - Advanced the state of the art for ECR charge breeding
 - Delivered 81 days of radioactive beams in final year
 - But level of background hindered the overall performance
- Installation of the EBIS charge breeder is progressing
 - Demonstrated 20% breeding efficiency in off-line tests
 - New high voltage platform is nearly complete
 - System should be operational in early 2016

Acknowledgements

This is the work of many people...

R. Pardo, G. Savard, R. Scott – ANL CARIBU and ECR

P.N. Ostroumov , C. Dickerson, S.A. Kondrashev, A. Barcikowski, S. Sharamentov, J. Alessi, E. Beebe, A. Pikin – EBIS development

B. Mustapha, A. Perry (IIT), M. Fraser (CERN) – Beam optics and hardware design