Status of RAON accelerator system

Hyung Jin Kim

Rare Isotope Science Project Institute for Basic Science

HIAI 2015, Yokohama

ptember 9th, 2

RAON site

Project period: 2011.12-2021.12 (10 years 1 month) Site area: 952,066 m² Budget: 382M\$(Acc.), 299M\$(Land), 519M\$(Bld.)

nstitute for Basic Science

RAON Layout and Beam Parameters

RAON

Progress of Accelerator Systems

Injector specification

ECRIS 2

LEBT

ECR-IS

- Output norm(rms) emittance
- Beam current
- Output beam energy
- RF frequency
- Magnets

LEBT

- Pre-bunchers
- Two Bends

RFQ

- RF frequency
- Output beam energy
- 4 Vane types
- **MEBT**
 - 3 Re-bunchers RF freq.

0.12 π mm-mrad 400euA for ²³⁸U³³⁺ + ²³⁸U³⁴⁺ 10 keV/u 28+18 GHz Fully superconducting NbTi

Multi-harmonic buncher, Velocity equalizer 90 deg.

RFQ

ECRIS 1

81.25 MHz 500keV/u

81.25 MHz

28 GHz ECR Ion Source

- Superconducting sextupole and solenoid prototypes were tested in 2013.
- Superconducting magnet assembly (6 sextupoles + 4 solenoids) was completed in 2014.
- Cryostat fabrication and assembly was done in 2014
- Beam test is in progress.

 B_{inj} = 3.5 T, B_{ext} = 2.2 T,

 $B_r = 2 B_{ecr}, B_{min} = 0.7 T$

Institute for Basic Science

28GHz Gyrotron

ECR Ion Source commissioning

기조과악언구원 Institute for Basic Science

Parameters	value		
Magnetic field	70% of the designed value		
Operating pressure	8.4e-8 @ injection chamber (not in plasma chamber)		
Microwave power	28GHz, 1 kW		
Bias disk voltage	-50 V		
Electrode structure	Triode structure		
Extraction voltage Extraction current	20 kV, -0.5kV, oV 2.1 mA		
Electrode distance	24 mm – 15 mm		

RAON

RFQ design parameters

PARAMETER	VALUE	81.25HHz+q=0.14+Ws=0.0125+Wg=0.05+A=0.326456258281+amu=1+1=0.4mA 1.00 x (cm) vs cell number
Beam Properties:		
Frequency	81.250 MHz	
Particle	H^{+1} to U_{238}^{+33}	-1.00 25 50 75 100 125 150 175 200 225 250 1.00 y (cm) vs cell number exit of cell
Input Energy	10 keV/u	
Input Current	0.4 mA	
Input Emittance: transverse (rms, norm)	0.012 .cm. mrad	-1.00 0 25 50 75 100 125 150 175 200 225 250 180 phi-phis (deg) vs cell number
Output Energy	0.507 MeV/u	30
Output Current for 0.4mA in.	~0.39 mA	
Output Emittance: transverse (rms, norm)	0.0125 .cm. mrad	-180 25 50 75 100 125 150 175 200 225 250
longitudinal (rms)	~26 keV/u-Degree	.01
Transmission	~98 %	
Structures and RF:		02 0 25 50 75 100 125 150 175 200 225 250
Peak surface Field	1.70 Kilpatrick	81.25MHz+q=0.14+Ws=0.0125+Wg=0.05+A=0.326456258281+amu=1+i=0.4mA .050 .050
Structure Power (for U_{238}^{+33})	92.4 kW	
Beam Power (for o.2mA each $U_{238}^{+33&+34}$)	1.44 kW	.025
Total Power	94 kW	
Duty Factor	100%	025
RF Feed	1 Drive loops	050 XP vs. X
Mechanical:		-1.000500 0500 1.000 -1.000500 0500 1.000 1.000 RFQ fringe cell 241 Plot 242 Z = 494.00752 ngood= 19575 .020
Length	4.94 meter	in the second
Operating Temperature	TBD Degree C	010.
-	-	
		500

30.0

60.0

1.000

-.020 E-Es vs. Phi-Phis -60.0 -30.0 0. Es = 0.507 Phs = 9.714

기초과학연구원 Institute for Basic Science

1

-1.000 Y vs. X -1.000 -.500

0.

.500

RFQ Prototype

- RFQ Design (2013.08)
- Design review (2013.11)
- RFQ Prototype
- vane machining and 3D measurement
- The 1st brazing failed (2014.04)
- Assessed the related issues
- Brazing procedure modified (2014.05)
- Confirmed brazing procedure (2014.06)
- RFQ prototype fab. completed (2014.09)
- RFQ Prototype test
- 15kW SSA, coupler, RCCS are installed

RFQ coupler Leak test

Prototype RFQ – RF conditioning

RAON

S 기초과학연구원 Institute for Basic Science

RFQ Fabrication

RFQ Fabrication: delivered in 2016.08

RAON Superconducting Linac

- RAON SCL is designed to accelerate high intensity beams.
- Focusing by NC quad doublets rather than SC solenoids.
- Optimized geometric beta of SC cavities (0.047, 0.12, 0.30, 0.51).
- Employs larger aperture to reduce beam loss (40 mm and 50 mm aperture).
- Prototyping of SC cavities and cryomodules is done.

Layout of Driver Linac

Design of SC Cavity

Optimization of Cavity Parameters

Mechanical analysis

Multipacting analysis

학연구원

Institute for Basic Science

Frequency shift

Frequency shift	QWR
Resonant Frequency	81.25MHz
Cavity length(upper)	-67.1kHz/mm
Cavity length(lower)	+1.3kHz/mm
Welding (0.58mm shrink)	+38.2kHz
EP/BCP (125um)	+267kHz
External pressure(Vacuum, L-He)	-4.6Hz/mbar
Cool down(293K→2K)	+203kHz
Lorentz Detuning	-1.7Hz/(MV/m) ²

Superconducting cavity

QWR

기소 바약연구원 Institute for Basic Science

Parameters	Unit	QWR	HWR	SSR1	SSR ₂
β _g	-	0.047	0.12	0.30	0.51
F	MHz	81.25	162.5	325	325
Aperture	mm	40	40	50	50
QR _s	Ohm	21	4 2	98	112
R/Q	Ohm	468	310	246	296
V _{acc}	MV	0.9	1.3	1.9	3.6
E _{peak} /E _{acc}		5.6	5.0	4.4	3.9
B _{peak} /E _{acc}		9.3	8.2	6.3	7.2
Q _{calc} /10 ⁹	-	1.7	4.1	9.2	10.5
Temp.	K	4.5	2	2	2

EM design optimization: Parameters sweeping

SC Cavity Prototyping

RAON

Rare Isotope Science Projec

CAVITY Manufacturing Process

Buffered Chemical Polishing

Institute for Basic Science

Figure 3: SEM Images of Nb samples (\times 5000), (a) surface of undeformed Nb, (b) cross-section of undeformed Nb, (c) surface of deformed Nb, (d) cross-section of deformed Nb, (e) surface of undeformed Nb with 1:1:1 BCP treated for 50 min, and (f) cross-section of undeformed Nb with 1:1:1 BCP treated for 50 min.

RAON

Vertical test of QWR cavity

Institute for Basic Science

RAON

Vertical test of HWR cavity

Leak check

RAON

Institute for Basic Science

RF coupler prototyping

High power test: TW 16kW, SW 5kW

Frequency: 162.5 MHz Nominal RF power: 5kW Q_{ext}=~2 x 10⁶

기초과학연구원 Institute for Basic Science

Frequency: 325 MHz Nominal RF power: 20 kW Q_{ext}=6 x 10⁶~7 x 10⁶

Cryomodule design (QWR)

RAON

16 기초과학연구원 Institute for Basic Science

Cryomodule development

• RAON

QWR Cryomodule (LHe/LN test)

기초과학연구원 Institute for Basic Science

SSR1 Cryomodule (LN test)

HWR Cryomodule (LHe/LN test)

SSR2 Cryomodule (LN test)

Static load of cryomodule

• QWR static load: 3.9 W (expectation: 3.2 W)

HWR static load: 13.5 W (expectation: 14.7 W)

nstitute for Basic Science

SRF Test Facility

- Install Helium Liquefier (New & Old)
- Install Warm Pump for 2K-module and 2K-module testing
- Remodeling of the facility is under way

[SRFTF Layout]

Institute for Basic Science

[Control System Logic]

24

Rare Iso

Main Cryoplant Schematics

Report on Strategy of Constructing the Cryoplant of RAON were submitted.
HRS Capacity options, HRS/HDS Construction Budgets were included.

CRAON

Helium Distribution System

Helium Distribution Flow : Cryoplant → DB (Distribution Box)
 → TL (Transfer Line) → VB (Valve Box) → CM (Cryomodule)

CRAON

nstitute for Basic Science

RAON RF Systems

RF Systems : Supplying RF Power to Cavity

- LLRF : RF Power Control
- HPRF : High Power Amp. , Transmission Line
- RF Distribution

LLRF Control Stability

- **Amplitude** : \pm 1 %
- **Phase :** \pm 1 °

HPRF test (QWR/HWR/SSR/RFQ SSPA)

2 kW SSPA unit test

Institute for Basic Science

CAON

LLRF+HPRF+Nb cavity test

Setup

Result

nstitute for Basic Science

- Operation range: under 50 W, HPRF output power (T/L limitation)
- CW operation: 1 H

LLRF		target	QWR	HWR	SSR1	SSR ₂
w/o PI FB	(%) (ampltude shift (dB))		±2.6 (1.5)	± 58 (7)	-	-
w/ PI FB	w/o P & I optimization	±1	±1.1	±7	-	-
(%)	w/ P & I optimization	±1	±0.15	±1.05	-	-

Summary

- C-RAON
- Prototyping of major accelerator parts has been in progress since 2013 through domestic vendors.
 - ECR ion source cryostat was fabricated (2014.09)
 - RFQ prototype fabricated successfully (2014.10)
 - SC cavity prototypes were delivered for test (since 2014.05)
 - Cryomodule prototypes were delivered for test (since 2014.12)
- Some prototypes are in testing stage.
 - ECR ion source, RFQ, MEBT buncher
 - Superconducting cavities and cryomodules (QWR, HWR)
- SRF test facility is under installation and will be ready in Feb. 2016.

Thank you !